Numerical modelling of the extensional dynamics in elastoviscoplastic fluids

The extensional dynamics of an elasto-viscoplastic (EVP) fluid is studied by means of numerical simulations modelling an experimental configuration. Specifically, we track the interface between the EVP material and the Newtonian medium using an algebraic volume of fluid method (MTHINC-VOF) and emplo...

Full description

Bibliographic Details
Main Authors: Abdulrazaq, M. (Author), Brandt, L. (Author), Rosti, M.E (Author), Shahmardi, A. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03141nam a2200433Ia 4500
001 10.1016-j.jnnfm.2023.105060
008 230526s2023 CNT 000 0 und d
020 |a 03770257 (ISSN) 
245 1 0 |a Numerical modelling of the extensional dynamics in elastoviscoplastic fluids 
260 0 |b Elsevier B.V.  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jnnfm.2023.105060 
520 3 |a The extensional dynamics of an elasto-viscoplastic (EVP) fluid is studied by means of numerical simulations modelling an experimental configuration. Specifically, we track the interface between the EVP material and the Newtonian medium using an algebraic volume of fluid method (MTHINC-VOF) and employ a fully Eulerian immersed boundary method (IBM) to model the motion of the piston responsible for the extension of the material. We investigate the role of different values of the yield stress, surface tension at the interface between the EVP material and the surrounding fluid, polymer viscosity ratio, and extension rates on the necking thickness of the material, extensional viscosity, and yielding of the material for two sets of parameter with low and high elasticity. The results of the simulations reveal that when the yield stress of the EVP material is much larger than the viscous stresses, the material undergoes an elastic deformation, regardless of the selected values of the extension rate, interfacial forces, and viscosity ratio. Moreover, by increasing the ratio of the polymeric viscosity to the total viscosity of the system, the EVP material produces stronger strain hardening and reaches the minimum resolvable width sooner. Specific and novel to our study, we show that interfacial forces cannot be ignored when the surface tension coefficient is such that a Capillary number based on the extensional rate is of order 1. For large values of the surface tension coefficient, the EVP material fails sooner, with a clear deviation from the exponential reduction in the neck thickness. Moreover, our results suggest that the role of the yield stress value on the dynamics of the material is more pronounced at lower elasticity. © 2023 The Author(s) 
650 0 4 |a Algebra 
650 0 4 |a Ductile fracture 
650 0 4 |a Elasticity 
650 0 4 |a Elasto-viscoplastic 
650 0 4 |a Elastoviscoplastic fluid 
650 0 4 |a Elastoviscoplastic materials 
650 0 4 |a Extension rates 
650 0 4 |a Extensional rheology 
650 0 4 |a Interfaces (materials) 
650 0 4 |a Interfacial forces 
650 0 4 |a Non Newtonian flow 
650 0 4 |a Non Newtonian liquids 
650 0 4 |a Non-Newtonian fluid 
650 0 4 |a Non-Newtonian fluids 
650 0 4 |a Numerical models 
650 0 4 |a Strain hardening 
650 0 4 |a Surface tension 
650 0 4 |a Surface tension coefficient 
650 0 4 |a Viscoplastic fluid 
650 0 4 |a Viscosity 
650 0 4 |a Viscosity ratios 
650 0 4 |a Yield stress 
700 1 0 |a Abdulrazaq, M.  |e author 
700 1 0 |a Brandt, L.  |e author 
700 1 0 |a Rosti, M.E.  |e author 
700 1 0 |a Shahmardi, A.  |e author 
773 |t Journal of Non-Newtonian Fluid Mechanics  |x 03770257 (ISSN)  |g 318