Structural membrane changes induced by pulsed blue light on methicillin-resistant Staphylococcus aureus (MRSA)

Background: In a recent study we showed that blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA) by perturbing, depolarizing, and disrupting its cell membrane. Purpose: The current study presents visual evidence that the observed biochemical changes also result in cell metaboli...

Full description

Bibliographic Details
Main Authors: Bowman, C. (Author), Bumah, V.V (Author), Cortez, P. (Author), Enwemeka, C.S (Author), Niesman, I.R (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03061nam a2200565Ia 4500
001 10.1016-j.jphotobiol.2021.112150
008 220427s2021 CNT 000 0 und d
020 |a 10111344 (ISSN) 
245 1 0 |a Structural membrane changes induced by pulsed blue light on methicillin-resistant Staphylococcus aureus (MRSA) 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jphotobiol.2021.112150 
520 3 |a Background: In a recent study we showed that blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA) by perturbing, depolarizing, and disrupting its cell membrane. Purpose: The current study presents visual evidence that the observed biochemical changes also result in cell metabolic changes and structural alteration of the cell membrane. Methods: Cultures of MRSA were treated with 450 nm pulsed blue light (PBL) at 3 mW/cm2 irradiance, using a sub lethal dose of 2.7 J/cm2 radiant exposure three times at 30-min intervals. Following 24 h incubation at 37 °C, irradiated colonies and control non-irradiated colonies were processed for light and transmission electron microscopy. Results: The images obtained revealed three major effects of PBL; (1) disruption of MRSA cell membrane, (2) alteration of membrane structure, and (3) disruption of cell replication. Conclusion: These signs of bacterial inactivation at a dose deliberately selected to be sub-lethal supports our previous finding that rapid depolarization of bacterial cell membrane and disruption of cellular function comprise another mechanism underlying photo-inactivation of bacteria. Further, it affirms the potency of PBL. © 2021 The Authors 
650 0 4 |a Article 
650 0 4 |a bacterial cell wall 
650 0 4 |a bacterial count 
650 0 4 |a bacterial membrane 
650 0 4 |a blue light 
650 0 4 |a cell culture technique 
650 0 4 |a Cell Culture Techniques 
650 0 4 |a cell division 
650 0 4 |a cell membrane 
650 0 4 |a Cell Membrane 
650 0 4 |a cell membrane depolarization 
650 0 4 |a cell metabolism 
650 0 4 |a Colony Count, Microbial 
650 0 4 |a controlled study 
650 0 4 |a Dose-Response Relationship, Radiation 
650 0 4 |a Electron microscopy 
650 0 4 |a light 
650 0 4 |a Light 
650 0 4 |a membrane damage 
650 0 4 |a metabolism 
650 0 4 |a methicillin resistant Staphylococcus aureus 
650 0 4 |a methicillin resistant Staphylococcus aureus 
650 0 4 |a Methicillin-Resistant Staphylococcus aureus 
650 0 4 |a microbial viability 
650 0 4 |a Microbial Viability 
650 0 4 |a MRSA 
650 0 4 |a nonhuman 
650 0 4 |a Photobiomodulation 
650 0 4 |a priority journal 
650 0 4 |a Pulsed blue light 
650 0 4 |a radiation response 
650 0 4 |a transmission electron microscopy 
700 1 |a Bowman, C.  |e author 
700 1 |a Bumah, V.V.  |e author 
700 1 |a Cortez, P.  |e author 
700 1 |a Enwemeka, C.S.  |e author 
700 1 |a Niesman, I.R.  |e author 
773 |t Journal of Photochemistry and Photobiology B: Biology