The electrochemical oxidation of butanediol isomers in an alkaline direct liquid fuel cell

In this work we demonstrate the first alkaline direct liquid fuel cell powered by butanediol (BD), and we examine the difference in performance and product formation across the four linear isomers 1,4-BD, 1,3-BD, 1,2-BD, and 2,3-BD when oxidation of the BD occurs on a Pd/C catalyst. The highest maxi...

Full description

Bibliographic Details
Main Authors: Fry-Petit, A. (Author), Haan, J.L (Author), Hernandez, L. (Author), Nguyen, D. (Author), Pecic, S. (Author), Vu, K. (Author), Waters, K. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02073nam a2200265Ia 4500
001 10.1016-j.jpowsour.2022.231401
008 220517s2022 CNT 000 0 und d
020 |a 03787753 (ISSN) 
245 1 0 |a The electrochemical oxidation of butanediol isomers in an alkaline direct liquid fuel cell 
260 0 |b Elsevier B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jpowsour.2022.231401 
520 3 |a In this work we demonstrate the first alkaline direct liquid fuel cell powered by butanediol (BD), and we examine the difference in performance and product formation across the four linear isomers 1,4-BD, 1,3-BD, 1,2-BD, and 2,3-BD when oxidation of the BD occurs on a Pd/C catalyst. The highest maximum power density was observed with the 1,4-BD isomer, reaching as high as 157 mW cm−2 at 60 °C using a split pH fuel cell. Both the fuel cell and the electrochemical cell showed an order of performance (i.e., power density and current density, respectively): 1,4-BD > 1,3-BD > 1,2-BD > 2,3-BD, with variations in performance dependent on the technique chosen. Carbon NMR was performed on fuel cell products to determine that the vicinal diols (1,2-BD and 2,3-BD) oxidized through some C–C bond scission, while the other isomers only oxidized at 1 or 2 of the alcohol groups. Overall, this work demonstrates potential for very strong power from a BD fuel cell. Furthermore, this work also presents an analysis of how the relative position of the alcohol groups impacts the adsorption of the molecule on the Pd surface leading to different performance levels and product formation. © 2022 The Author(s) 
650 0 4 |a Acid-alkaline fuel cell 
650 0 4 |a Biofuel 
650 0 4 |a Electrochemical oxidation 
650 0 4 |a NMR spectroscopy 
650 0 4 |a Split pH fuel cell 
700 1 |a Fry-Petit, A.  |e author 
700 1 |a Haan, J.L.  |e author 
700 1 |a Hernandez, L.  |e author 
700 1 |a Nguyen, D.  |e author 
700 1 |a Pecic, S.  |e author 
700 1 |a Vu, K.  |e author 
700 1 |a Waters, K.  |e author 
773 |t Journal of Power Sources