Global sensitivity analysis informed model reduction and selection applied to a Valsalva maneuver model

In this study, we develop a methodology for model reduction and selection informed by global sensitivity analysis (GSA) methods. We apply these techniques to a control model that takes systolic blood pressure and thoracic tissue pressure data as inputs and predicts heart rate in response to the Vals...

Full description

Bibliographic Details
Main Authors: Alexanderian, A. (Author), Olufsen, M.S (Author), Randall, E.B (Author), Randolph, N.Z (Author)
Format: Article
Language:English
Published: Academic Press 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02765nam a2200433Ia 4500
001 10.1016-j.jtbi.2021.110759
008 220427s2021 CNT 000 0 und d
020 |a 00225193 (ISSN) 
245 1 0 |a Global sensitivity analysis informed model reduction and selection applied to a Valsalva maneuver model 
260 0 |b Academic Press  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jtbi.2021.110759 
520 3 |a In this study, we develop a methodology for model reduction and selection informed by global sensitivity analysis (GSA) methods. We apply these techniques to a control model that takes systolic blood pressure and thoracic tissue pressure data as inputs and predicts heart rate in response to the Valsalva maneuver (VM). The study compares four GSA methods based on Sobol’ indices (SIs) quantifying the parameter influence on the difference between the model output and the heart rate data. The GSA methods include standard scalar SIs determining the average parameter influence over the time interval studied and three time-varying methods analyzing how parameter influence changes over time. The time-varying methods include a new technique, termed limited-memory SIs, predicting parameter influence using a moving window approach. Using the limited-memory SIs, we perform model reduction and selection to analyze the necessity of modeling both the aortic and carotid baroreceptor regions in response to the VM. We compare the original model to systematically reduced models including (i) the aortic and carotid regions, (ii) the aortic region only, and (iii) the carotid region only. Model selection is done quantitatively using the Akaike and Bayesian Information Criteria and qualitatively by comparing the neurological predictions. Results show that it is necessary to incorporate both the aortic and carotid regions to model the VM. © 2021 Elsevier Ltd 
650 0 4 |a aortic baroreceptor 
650 0 4 |a article 
650 0 4 |a Bayes theorem 
650 0 4 |a Bayes Theorem 
650 0 4 |a blood pressure 
650 0 4 |a Blood Pressure 
650 0 4 |a carotid sinus pressoreceptor 
650 0 4 |a controlled study 
650 0 4 |a heart rate 
650 0 4 |a Heart Rate 
650 0 4 |a human 
650 0 4 |a memory 
650 0 4 |a modeling 
650 0 4 |a prediction 
650 0 4 |a prediction 
650 0 4 |a quantitative analysis 
650 0 4 |a sensitivity analysis 
650 0 4 |a sensitivity analysis 
650 0 4 |a systolic blood pressure 
650 0 4 |a tissue pressure 
650 0 4 |a Valsalva maneuver 
650 0 4 |a Valsalva Maneuver 
700 1 |a Alexanderian, A.  |e author 
700 1 |a Olufsen, M.S.  |e author 
700 1 |a Randall, E.B.  |e author 
700 1 |a Randolph, N.Z.  |e author 
773 |t Journal of Theoretical Biology