Fluid dynamic simulation suggests hopping locomotion in the Ordovician trilobite Placoparia

Colonization of the water column by animals occurred gradually during the early Palaeozoic. However, the morphological and functional changes that took place during this colonization are poorly understood. The fossil record provides clear evidence of animals that were well adapted for swimming near...

Full description

Bibliographic Details
Main Authors: Esteve, J. (Author), Gómez, I. (Author), López, M. (Author), Ramírez, C.-G (Author)
Format: Article
Language:English
Published: Academic Press 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03411nam a2200757Ia 4500
001 10.1016-j.jtbi.2021.110916
008 220427s2021 CNT 000 0 und d
020 |a 00225193 (ISSN) 
245 1 0 |a Fluid dynamic simulation suggests hopping locomotion in the Ordovician trilobite Placoparia 
260 0 |b Academic Press  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jtbi.2021.110916 
520 3 |a Colonization of the water column by animals occurred gradually during the early Palaeozoic. However, the morphological and functional changes that took place during this colonization are poorly understood. The fossil record provides clear evidence of animals that were well adapted for swimming near the seafloor or in the open ocean, but recognising transitional forms is more problematic. Trilobites are a good model to explore the colonization of marine ecosystems. Here, we use computational fluid dynamics (CFD) to test between competing functional hypotheses in the Ordovician trilobite Placoparia. The CFD simulations exhibits hydrodynamics that promote detachment from the seafloor but also promote return to the seafloor following detachment, this is compatible with hopping locomotion. The results suggest that Placopara was not able to swim, but its hydrodynamics allowed it to hop long distances. This is consistent with the fossil record, as some ichnofossils show evidence of hopping. This type of locomotion could be useful to avoid predators as an escape mechanism. In addition, CFD simulation shows how the morphology of Placoparia is adapted to protect anterior appendices of the trunk and generate a ventral vortex that send food particles directly to the trilobite mouth. Adaptations in Placoparia allowed the first steps to evolved a new ecological habitat and consequently nektonization during the GOBE. © 2021 The Author(s) 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a arthropod 
650 0 4 |a Arthropoda 
650 0 4 |a Arthropods 
650 0 4 |a Arthropods 
650 0 4 |a article 
650 0 4 |a biomechanics 
650 0 4 |a biomechanics 
650 0 4 |a Biomechanics 
650 0 4 |a computational fluid dynamics 
650 0 4 |a computer simulation 
650 0 4 |a ecology 
650 0 4 |a Ecology 
650 0 4 |a ecosystem 
650 0 4 |a Ecosystem 
650 0 4 |a fluid dynamics 
650 0 4 |a food 
650 0 4 |a fossil 
650 0 4 |a fossil record 
650 0 4 |a Fossils 
650 0 4 |a functional diversity 
650 0 4 |a Functional diversity 
650 0 4 |a functional response 
650 0 4 |a habitat 
650 0 4 |a hydrodynamics 
650 0 4 |a hydrodynamics 
650 0 4 |a Hydrodynamics 
650 0 4 |a locomotion 
650 0 4 |a locomotion 
650 0 4 |a marine environment 
650 0 4 |a mouth 
650 0 4 |a nonhuman 
650 0 4 |a numerical model 
650 0 4 |a Ordovician 
650 0 4 |a Ordovician 
650 0 4 |a Ordovician 
650 0 4 |a paleoceanography 
650 0 4 |a paleontology 
650 0 4 |a Placoparia 
650 0 4 |a predator 
650 0 4 |a seafloor 
650 0 4 |a simulation 
650 0 4 |a swimming 
650 0 4 |a Swimming 
650 0 4 |a trilobite 
650 0 4 |a trilobite 
650 0 4 |a Trilobitomorpha 
650 0 4 |a trunk 
700 1 |a Esteve, J.  |e author 
700 1 |a Gómez, I.  |e author 
700 1 |a López, M.  |e author 
700 1 |a Ramírez, C.-G.  |e author 
773 |t Journal of Theoretical Biology