Hybrid microwave sintering of a lunar soil simulant: Effects of processing parameters on microstructure characteristics and mechanical properties

Hybrid microwave sintering is considered a promising method to produce densified components using in-situ resources for lunar construction. This study aimed to examine the effects of primary microwave sintering parameters on the densification, microstructure evolution, and mechanical properties of a...

Full description

Bibliographic Details
Main Authors: Cui, B. (Author), Gholami, S. (Author), Kim, Y.-J (Author), Kim, Y.-R (Author), Lee, J. (Author), Shin, H.-S (Author), Zhang, X. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03030nam a2200457Ia 4500
001 10.1016-j.matdes.2022.110878
008 220718s2022 CNT 000 0 und d
020 |a 02641275 (ISSN) 
245 1 0 |a Hybrid microwave sintering of a lunar soil simulant: Effects of processing parameters on microstructure characteristics and mechanical properties 
260 0 |b Elsevier Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.matdes.2022.110878 
520 3 |a Hybrid microwave sintering is considered a promising method to produce densified components using in-situ resources for lunar construction. This study aimed to examine the effects of primary microwave sintering parameters on the densification, microstructure evolution, and mechanical properties of a lunar soil simulant and analyzed the processing-microstructure-properties relationship. The experimental design was based on the Taguchi method, where temperature, dwell time, and heating rate were regarded as the primary design factors. Density measurements presented the porosity of microwave-sintered specimens ranging from 8.5 % to 11.5 %. Chemical and microstructural characterization was integrated and showed three identical mineral phases appeared at different sintering conditions. Nanoindentation was used to determine nanomechanical properties of microstructural components and subsequent effective stiffness via homogenization technique. Uniaxial compressive strength of sintered specimens was also measured. The sintering design parameters in the range attempted significantly affected microstructural characteristics, while no major changes in the chemical–mechanical properties of phases occurred. Taguchi analysis implied that microstructural evolution is predominantly affected by the sintering temperature, whereas the other two factors (i.e., dwell time and heating rate) were not significant. The fundamental understanding from this study can improve the design of hybrid microwave sintering to densify lunar soils for future lunar construction. © 2022 The Authors 
650 0 4 |a Compressive strength 
650 0 4 |a Dwell time 
650 0 4 |a Heating rate 
650 0 4 |a Homogenization method 
650 0 4 |a Hybrid microwave sintering 
650 0 4 |a Lunar construction 
650 0 4 |a Lunar simulant 
650 0 4 |a Lunar soil simulant 
650 0 4 |a Mechanical properties 
650 0 4 |a Microstructure 
650 0 4 |a Microstructure characteristics 
650 0 4 |a Microstructure characterization 
650 0 4 |a Microwave heating 
650 0 4 |a Microwave sintering 
650 0 4 |a Microwaves 
650 0 4 |a Moon 
650 0 4 |a Processing parameters 
650 0 4 |a Sintered specimen 
650 0 4 |a Sintering 
650 0 4 |a Soils 
650 0 4 |a Taguchi methods 
700 1 |a Cui, B.  |e author 
700 1 |a Gholami, S.  |e author 
700 1 |a Kim, Y.-J.  |e author 
700 1 |a Kim, Y.-R.  |e author 
700 1 |a Lee, J.  |e author 
700 1 |a Shin, H.-S.  |e author 
700 1 |a Zhang, X.  |e author 
773 |t Materials and Design