Analyzing the effects of observation function selection in ensemble Kalman filtering for epidemic models

The Ensemble Kalman Filter (EnKF) is a popular sequential data assimilation method that has been increasingly used for parameter estimation and forecast prediction in epidemiological studies. The observation function plays a critical role in the EnKF framework, connecting the unknown system variable...

Full description

Bibliographic Details
Main Authors: Arnold, A. (Author), Mitchell, L. (Author)
Format: Article
Language:English
Published: Elsevier Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03505nam a2200661Ia 4500
001 10.1016-j.mbs.2021.108655
008 220427s2021 CNT 000 0 und d
020 |a 00255564 (ISSN) 
245 1 0 |a Analyzing the effects of observation function selection in ensemble Kalman filtering for epidemic models 
260 0 |b Elsevier Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.mbs.2021.108655 
520 3 |a The Ensemble Kalman Filter (EnKF) is a popular sequential data assimilation method that has been increasingly used for parameter estimation and forecast prediction in epidemiological studies. The observation function plays a critical role in the EnKF framework, connecting the unknown system variables with the observed data. Key differences in observed data and modeling assumptions have led to the use of different observation functions in the epidemic modeling literature. In this work, we present a novel computational analysis demonstrating the effects of observation function selection when using the EnKF for state and parameter estimation in this setting. In examining the use of four epidemiologically-inspired observation functions of different forms in connection with the classic Susceptible–Infectious–Recovered (SIR) model, we show how incorrect observation modeling assumptions (i.e., fitting incidence data with a prevalence model, or neglecting under-reporting) can lead to inaccurate filtering estimates and forecast predictions. Results demonstrate the importance of choosing an observation function that well interprets the available data on the corresponding EnKF estimates in several filtering scenarios, including state estimation with known parameters, and combined state and parameter estimation with both constant and time-varying parameters. Numerical experiments further illustrate how modifying the observation noise covariance matrix in the filter can help to account for uncertainty in the observation function in certain cases. © 2021 Elsevier Inc. 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a Computational analysis 
650 0 4 |a covariance 
650 0 4 |a Covariance matrix 
650 0 4 |a data assimilation 
650 0 4 |a Data assimilation 
650 0 4 |a disease transmission 
650 0 4 |a Ensemble Kalman Filter 
650 0 4 |a Ensemble Kalman filtering 
650 0 4 |a epidemic 
650 0 4 |a epidemic 
650 0 4 |a Epidemics 
650 0 4 |a Epidemiologic Methods 
650 0 4 |a Epidemiological studies 
650 0 4 |a epidemiology 
650 0 4 |a epidemiology 
650 0 4 |a Epidemiology 
650 0 4 |a forecasting 
650 0 4 |a Forecasting 
650 0 4 |a Forecasting 
650 0 4 |a human 
650 0 4 |a incidence 
650 0 4 |a inverse problem 
650 0 4 |a Inverse problems 
650 0 4 |a Kalman filter 
650 0 4 |a Kalman filtering 
650 0 4 |a Kalman filters 
650 0 4 |a modeling 
650 0 4 |a Models, Biological 
650 0 4 |a mortality rate 
650 0 4 |a Numerical experiments 
650 0 4 |a Observation model 
650 0 4 |a Observation model uncertainty 
650 0 4 |a parameter estimation 
650 0 4 |a Parameter estimation 
650 0 4 |a prevalence 
650 0 4 |a procedures 
650 0 4 |a signal noise ratio 
650 0 4 |a simulation 
650 0 4 |a State and parameter estimations 
650 0 4 |a Time varying parameter 
650 0 4 |a uncertainty analysis 
700 1 |a Arnold, A.  |e author 
700 1 |a Mitchell, L.  |e author 
773 |t Mathematical Biosciences