Tip-based nanofabrication below 40 nm combined with a nanopositioning machine with a movement range of Ø100 mm

In this paper, the combination of an advanced nanopositioning technique and a tip-based system, which can be used as an atomic force microscope (AFM) and especially for field emission scanning probe lithography (FESPL) is presented. This is possible through the use of active microcantilevers that al...

Full description

Bibliographic Details
Main Authors: Dontsov, D. (Author), Hesse, S. (Author), Krötschl, A. (Author), Manske, E. (Author), Ortlepp, I. (Author), Rangelow, I.W (Author), Reibe, M. (Author), Reuter, C. (Author), Stauffenberg, J. (Author), Strehle, S. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02429nam a2200397Ia 4500
001 10.1016-j.mne.2023.100201
008 230526s2023 CNT 000 0 und d
020 |a 25900072 (ISSN) 
245 1 0 |a Tip-based nanofabrication below 40 nm combined with a nanopositioning machine with a movement range of Ø100 mm 
260 0 |b Elsevier B.V.  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.mne.2023.100201 
520 3 |a In this paper, the combination of an advanced nanopositioning technique and a tip-based system, which can be used as an atomic force microscope (AFM) and especially for field emission scanning probe lithography (FESPL) is presented. This is possible through the use of active microcantilevers that allow easy switching between measurement and write modes. The combination of nanopositioning and nanomeasuring machines and tip-based systems overcomes the usual limitations of AFM technology and makes it possible to perform high-precision surface scanning and nanofabrication on wafer sizes up to 4 in. We specifically discuss the potential of nanofabrication via FESPL in combination with the nanofabrication machine (NFM-100). Results are presented, where nanofabrication is demonstrated in form of a spiral path over a total length of 1 mm and the potential of this technique in terms of accuracy is discussed. Furthermore, ten lines were written with a pitch of 100 nm and a linewidth below 40 nm was achieved, which is in principle possible over the entire range of motion. © 2023 The Author(s) 
650 0 4 |a Atomic force 
650 0 4 |a Field emission 
650 0 4 |a Field emission scanning 
650 0 4 |a Field emission scanning probe lithography 
650 0 4 |a Large working area 
650 0 4 |a Large working areas 
650 0 4 |a Micro-cantilevers 
650 0 4 |a Nano-positioning 
650 0 4 |a Nanopositioning technology 
650 0 4 |a Nanotechnology 
650 0 4 |a Scanning probe lithography 
650 0 4 |a Tip-based nanofabrication 
650 0 4 |a Working areas 
700 1 0 |a Dontsov, D.  |e author 
700 1 0 |a Hesse, S.  |e author 
700 1 0 |a Krötschl, A.  |e author 
700 1 0 |a Manske, E.  |e author 
700 1 0 |a Ortlepp, I.  |e author 
700 1 0 |a Rangelow, I.W.  |e author 
700 1 0 |a Reibe, M.  |e author 
700 1 0 |a Reuter, C.  |e author 
700 1 0 |a Stauffenberg, J.  |e author 
700 1 0 |a Strehle, S.  |e author 
773 |t Micro and Nano Engineering  |x 25900072 (ISSN)  |g 19