Pore size-excluded low viscous porous liquids for CO2 sorption at room temperature and thermodynamic modeling study

Herein, we report porous ionic liquids (type-III) designed to utilize microporous ZIF-8 moieties with functional ionic liquids such as 8-(2-methoxyethyl)-1,8-Diazabicyclo[5.4.0]undec-7-en-8-ium, Bis(trifluoromethane)sulfonamide ([MEDBU][TFSI] and Trioctylammonium 4-para-tert-butylbenzoiate [TOAH][PT...

Full description

Bibliographic Details
Main Authors: Mikkola, J.-P (Author), Mukesh, C. (Author), Nikjoo, D. (Author), Samikannu, A. (Author), Sarmad, S. (Author), Siljebo, W. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03077nam a2200469Ia 4500
001 10.1016-j.molliq.2022.119046
008 220510s2022 CNT 000 0 und d
020 |a 01677322 (ISSN) 
245 1 0 |a Pore size-excluded low viscous porous liquids for CO2 sorption at room temperature and thermodynamic modeling study 
260 0 |b Elsevier B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.molliq.2022.119046 
520 3 |a Herein, we report porous ionic liquids (type-III) designed to utilize microporous ZIF-8 moieties with functional ionic liquids such as 8-(2-methoxyethyl)-1,8-Diazabicyclo[5.4.0]undec-7-en-8-ium, Bis(trifluoromethane)sulfonamide ([MEDBU][TFSI] and Trioctylammonium 4-para-tert-butylbenzoiate [TOAH][PTBBA]). The prepared materials were thoroughly characterized by means of XRD, FT-IR, SEM, TEM, BET, TGA, DSC and viscometry techniques. The idea of combining the intrinsic properties of ionic liquids with microporous architecture to prepare porous ionic liquids yields promising fluidic materials that have received attention in industrial applications such as gas sorption and separation etc. The prepared porous ionic liquids possess unique physico-chemical properties such as low viscosity, high thermal stability, low vapor pressure, reusability and their fluidic nature renders the materials suitable for CO2 capture. Herein introduced porous ionic liquids (ILs) showed enhanced CO2 uptake (0.92 mmol/g in [TOAH][PTBBA]-Z100 and 1.16 mmol/g in [MEDBU][TFSI]-Z200), or in other words, 15–47% higher sorption capacity compared to neat ionic liquids. This concept overcomes the drawbacks of highly viscous ILs and their limited CO2 sorption capacity. Thermodynamic modeling further demonstrated that the enthalpy of sorption is only −9.99 kJ mol−1, indicating that significantly less energy is required for regeneration. This is promising for the potential use of these fluidic materials in continuous separation processes on an industrial scale, as a better alternative to the existing hazardous amine scrubbing. © 2022 The Author(s) 
650 0 4 |a Carbon dioxide 
650 0 4 |a Chemical stability 
650 0 4 |a Functional ionic liquids 
650 0 4 |a Ionic liquids 
650 0 4 |a Ionic liquids 
650 0 4 |a Liquid types 
650 0 4 |a Microporosity 
650 0 4 |a Microporous 
650 0 4 |a Microporous materials 
650 0 4 |a Modelling studies 
650 0 4 |a Pore size 
650 0 4 |a Porous ionic liquid 
650 0 4 |a Porous ionic liquids 
650 0 4 |a Reusability 
650 0 4 |a Reversible CO2 capture 
650 0 4 |a Reversible CO2 capture 
650 0 4 |a Sorption 
650 0 4 |a Sorption capacities 
650 0 4 |a Sulfur compounds 
650 0 4 |a Temperature modeling 
650 0 4 |a Thermodynamic modelling 
650 0 4 |a ZIF-8 
650 0 4 |a ZIF-8 
700 1 |a Mikkola, J.-P.  |e author 
700 1 |a Mukesh, C.  |e author 
700 1 |a Nikjoo, D.  |e author 
700 1 |a Samikannu, A.  |e author 
700 1 |a Sarmad, S.  |e author 
700 1 |a Siljebo, W.  |e author 
773 |t Journal of Molecular Liquids