Impact of simulated military operational stress on executive function relative to trait resilience, aerobic fitness, and neuroendocrine biomarkers

Purpose: To study the impact of 48 h of simulated military operational stress (SMOS) on executive function, in addition to the role of trait resilience (RES) and aerobic fitness (FIT) on executive function performance. Associations between executive function and neuropeptide-Y (NPY), brain-derived n...

Full description

Bibliographic Details
Main Authors: Basner, M. (Author), Beckner, M.E (Author), Conkright, W.R (Author), Connaboy, C. (Author), Eagle, S.R (Author), Ferrarelli, F. (Author), Flanagan, S.D (Author), Germain, A. (Author), Jabloner, L.R (Author), LaGoy, A.D (Author), Lovalekar, M. (Author), Martin, B.J (Author), Nindl, B.C (Author), Proessl, F. (Author), Roma, P.G (Author), Sinnott, A.M (Author)
Format: Article
Language:English
Published: Elsevier Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 05573nam a2200949Ia 4500
001 10.1016-j.physbeh.2021.113413
008 220427s2021 CNT 000 0 und d
020 |a 00319384 (ISSN) 
245 1 0 |a Impact of simulated military operational stress on executive function relative to trait resilience, aerobic fitness, and neuroendocrine biomarkers 
260 0 |b Elsevier Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.physbeh.2021.113413 
520 3 |a Purpose: To study the impact of 48 h of simulated military operational stress (SMOS) on executive function, in addition to the role of trait resilience (RES) and aerobic fitness (FIT) on executive function performance. Associations between executive function and neuropeptide-Y (NPY), brain-derived neurotropic factor (BDNF), insulin-like growth factor-I (IGF-I), oxytocin, and α-klotho (klotho) were assessed to elucidate potential biomarkers that may contribute to cognitive performance during a multi-factorial stress scenario. Methods: Fifty-four service members (SM) (26.4 ± 5.4 years, 178.0 ± 6.5 cm, 85.2 ± 14.0 kg) completed the 5-day protocol, including daily physical exertion and 48 h of restricted sleep and caloric intake. Each morning subjects completed a fasted blood draw followed by Cognition, a 10-part cognitive test battery assessing executive function. SMs were grouped into tertiles [low (L-), moderate (M-), high (H-)] based on Connor Davidson Resilience Score (RES) and V˙O2peak (FIT). Repeated measures ANOVA were run to analyze the effect of day on cognitive performance and biomarker concentration. Separate two-way mixed ANOVAs were run to determine the interaction of group by day on cognitive function. Friedman test with Bonferroni-corrected pairwise comparisons were used if assumptions for ANOVA were not met. Associations between changes in biomarkers and cognitive performance were analyzed using parametric and non-parametric correlation coefficients. Results: SMOS reduced SM vigilance –11.3% (p < 0.001) and working memory –5.6% (p = 0.015), and increased risk propensity +9.5% (p = 0.005). H-RES and H-FIT SMs demonstrated stable vigilance across SMOS (p > 0.05). Vigilance was compromised during SMOS in L- and M-RES (p = 0.007 and p = 0.001, respectively) as well as L- and M-FIT (p = 0.001 and p = 0.031, respectively). SMOS reduced circulating concentrations of α-klotho -7.2% (p = 0.004), NPY -6.4% (p = 0.001), and IGF-I -8.1% (p < 0.001) from baseline through the end of the protocol. BDNF declined –19.2% after the onset of sleep and caloric restriction (p = 0.005) with subsequent recovery within 48 h. Oxytocin remained stable (p > 0.05). Several modest associations between neuroendocrine biomarkers and cognitive performance were identified. Conclusion: This study demonstrates H-FIT and H-RES may buffer the impact of SMOS on vigilance. SMOS negatively impacted circulating neuroendocrine biomarkers. While BDNF returned to baseline concentrations by the end of the 5 d protocol, NPY, IGF-I, and α-klotho may require a longer recovery period. These data suggest that the military may benefit by training and/or selection processes targeting at augmenting trait resilience and aerobic fitness for increased readiness. © 2021 
650 0 4 |a adult 
650 0 4 |a aerobic exercise 
650 0 4 |a Aerobic fitness 
650 0 4 |a army 
650 0 4 |a Article 
650 0 4 |a biological marker 
650 0 4 |a biological marker 
650 0 4 |a Biomarkers 
650 0 4 |a Biomarkers 
650 0 4 |a brain derived neurotrophic factor 
650 0 4 |a caloric intake 
650 0 4 |a caloric restriction 
650 0 4 |a cognition 
650 0 4 |a Cognition 
650 0 4 |a cognition assessment 
650 0 4 |a Connor Davidson resilience scale 
650 0 4 |a controlled study 
650 0 4 |a densitometry 
650 0 4 |a executive function 
650 0 4 |a Executive Function 
650 0 4 |a exercise 
650 0 4 |a Exercise 
650 0 4 |a fitness 
650 0 4 |a Friedman test 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a job stress 
650 0 4 |a Klotho protein 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a meal 
650 0 4 |a Memory, Short-Term 
650 0 4 |a military personnel 
650 0 4 |a Military Personnel 
650 0 4 |a Military stress 
650 0 4 |a neuroendocrine system 
650 0 4 |a neuropeptide Y 
650 0 4 |a oxytocin 
650 0 4 |a Physical Fitness 
650 0 4 |a polysomnography 
650 0 4 |a priority journal 
650 0 4 |a psychological resilience 
650 0 4 |a Psychomotor vigilance (PVT) 
650 0 4 |a Resilience 
650 0 4 |a short term memory 
650 0 4 |a simulated military operational stress 
650 0 4 |a simulation 
650 0 4 |a sleep disorder 
650 0 4 |a somatomedin C 
650 0 4 |a spatial learning 
650 0 4 |a vein puncture 
650 0 4 |a visual discrimination learning test 
650 0 4 |a working memory 
700 1 |a Basner, M.  |e author 
700 1 |a Beckner, M.E.  |e author 
700 1 |a Conkright, W.R.  |e author 
700 1 |a Connaboy, C.  |e author 
700 1 |a Eagle, S.R.  |e author 
700 1 |a Ferrarelli, F.  |e author 
700 1 |a Flanagan, S.D.  |e author 
700 1 |a Germain, A.  |e author 
700 1 |a Jabloner, L.R.  |e author 
700 1 |a LaGoy, A.D.  |e author 
700 1 |a Lovalekar, M.  |e author 
700 1 |a Martin, B.J.  |e author 
700 1 |a Nindl, B.C.  |e author 
700 1 |a Proessl, F.  |e author 
700 1 |a Roma, P.G.  |e author 
700 1 |a Sinnott, A.M.  |e author 
773 |t Physiology and Behavior