The Control of a Lower Limb Exoskeleton for Gait Rehabilitation: A Hybrid Active Force Control Approach

This paper focuses on the modelling and control of a three-link lower limb exoskeleton for gait rehabilitation. The exoskeleton that is restricted to the sagittal plane is modelled together with a human lower limb model. In this case study, a harmonic disturbance is excited at the joints of the exos...

Full description

Bibliographic Details
Main Authors: Abidin, A.F.Z (Author), Khairuddina, I.M (Author), Majeed, A.P.P.A (Author), Mohamed, Z. (Author), Razman, M.A.M (Author), Taha, Z. (Author), Yussof H. (Author), Zakaria, M.A (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2017
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02605nas a2200493Ia 4500
001 10.1016-j.procs.2017.01.204
008 220120c20179999CNT?? ? 0 0und d
020 |a 18770509 (ISSN) 
245 1 0 |a The Control of a Lower Limb Exoskeleton for Gait Rehabilitation: A Hybrid Active Force Control Approach 
260 0 |b Elsevier B.V.  |c 2017 
520 3 |a This paper focuses on the modelling and control of a three-link lower limb exoskeleton for gait rehabilitation. The exoskeleton that is restricted to the sagittal plane is modelled together with a human lower limb model. In this case study, a harmonic disturbance is excited at the joints of the exoskeleton whilst it is carrying out a joint space trajectory tracking. The disturbance is introduced to examine the compensating efficacy of the proposed controller. A particle swarm optimised active force control strategy is proposed to augment the disturbance regulation of a conventional proportional-derivative (PD) control law. The simulation study suggests that the proposed control approach mitigates well the disturbance effect whilst maintaining its tracking performance which is seemingly in stark contrast with its traditional PD counterpart. © 2017 The Authors. 
650 0 4 |a active force control 
650 0 4 |a Active force control 
650 0 4 |a Control theory 
650 0 4 |a Exoskeleton (Robotics) 
650 0 4 |a Force control 
650 0 4 |a gait rehabilitation 
650 0 4 |a Gait rehabilitation 
650 0 4 |a Intelligent control 
650 0 4 |a Joints (anatomy) 
650 0 4 |a Manipulators 
650 0 4 |a Neuromuscular rehabilitation 
650 0 4 |a particle swarm optimisation 
650 0 4 |a Particle swarm optimisation 
650 0 4 |a Particle swarm optimization (PSO) 
650 0 4 |a Patient rehabilitation 
650 0 4 |a Robotics 
650 0 4 |a robust 
650 0 4 |a Smart sensors 
650 0 4 |a Space flight 
650 0 4 |a three-link manipulator 
650 0 4 |a Three-link manipulator 
650 0 4 |a trajectory tracking control 
650 0 4 |a Trajectory tracking control 
700 1 0 |a Abidin, A.F.Z.  |e author 
700 1 0 |a Khairuddina, I.M.  |e author 
700 1 0 |a Majeed, A.P.P.A.  |e author 
700 1 0 |a Mohamed, Z.  |e author 
700 1 0 |a Razman, M.A.M.  |e author 
700 1 0 |a Taha, Z.  |e author 
700 1 0 |a Yussof H.  |e author 
700 1 0 |a Zakaria, M.A.  |e author 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.procs.2017.01.204 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016121058&doi=10.1016%2fj.procs.2017.01.204&partnerID=40&md5=85b595ea2f32479d3d1e4541fe28250a