Spatiotemporal patterns of northern lake formation since the Last Glacial Maximum

The northern mid- to high-latitudes have the highest total number and area of lakes on Earth. Lake origins in these regions are diverse, but to a large extent coupled to glacial, permafrost, and peatland histories. The synthesis of 1207 northern lake initiation records presented here provides an ana...

Full description

Bibliographic Details
Main Authors: Anthony, K.M.W (Author), Bret-Harte, M.S (Author), Brosius, L.S (Author), Grosse, G. (Author), Jones, M.C (Author), Lenz, J. (Author), Treat, C.C (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03119nam a2200541Ia 4500
001 10.1016-j.quascirev.2020.106773
008 220427s2021 CNT 000 0 und d
020 |a 02773791 (ISSN) 
245 1 0 |a Spatiotemporal patterns of northern lake formation since the Last Glacial Maximum 
260 0 |b Elsevier Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.quascirev.2020.106773 
520 3 |a The northern mid- to high-latitudes have the highest total number and area of lakes on Earth. Lake origins in these regions are diverse, but to a large extent coupled to glacial, permafrost, and peatland histories. The synthesis of 1207 northern lake initiation records presented here provides an analog for rapid landscape-level change in response to climate warming, and its subsequent attenuation by physical and biological feedback mechanisms. Our compilation reveals two peaks in northern lake formation, 13,200 and 10,400 years ago, both following rapid increases in North Atlantic air temperature. Placing our findings within the context of existing paleoenvironmental records, we suggest that solar insolation-driven changes in climate (temperature and water balance) that led to deglaciation and permafrost thaw likely contributed to high rates of northern lake formation during the last Deglacial period. However, further landscape development and stabilization dramatically reduced rates of lake formation beginning ∼10,000 years ago. This suggests that temperature alone may not control future lake development; rather, multiple factors must align to enable a landscape to respond with an increase in lake area. We propose that land surfaces strongly geared toward increased lake formation were highly conditioned by glaciation. Thus, it is unlikely that warming this century will cause lake formation as rapid or as widespread as that during the last Deglacial period. © 2020 Elsevier Ltd 
650 0 4 |a air temperature 
650 0 4 |a Air temperature 
650 0 4 |a Atlantic Ocean 
650 0 4 |a Atlantic Ocean (North) 
650 0 4 |a Climate change 
650 0 4 |a Climate dynamics 
650 0 4 |a Data compilation 
650 0 4 |a Feedback mechanisms 
650 0 4 |a Glacial geology 
650 0 4 |a Interglacial 
650 0 4 |a lacustrine environment 
650 0 4 |a Lakes 
650 0 4 |a landscape change 
650 0 4 |a Landscape development 
650 0 4 |a last deglaciation 
650 0 4 |a Last Glacial Maximum 
650 0 4 |a Last Glacial Maximum 
650 0 4 |a Multiple factors 
650 0 4 |a paleoenvironment 
650 0 4 |a Paleolimnology 
650 0 4 |a Panarctic 
650 0 4 |a peatland 
650 0 4 |a permafrost 
650 0 4 |a Permafrost 
650 0 4 |a Permafrost thaws 
650 0 4 |a Solar insolation 
650 0 4 |a spatiotemporal analysis 
650 0 4 |a Spatiotemporal patterns 
700 1 |a Anthony, K.M.W.  |e author 
700 1 |a Bret-Harte, M.S.  |e author 
700 1 |a Brosius, L.S.  |e author 
700 1 |a Grosse, G.  |e author 
700 1 |a Jones, M.C.  |e author 
700 1 |a Lenz, J.  |e author 
700 1 |a Treat, C.C.  |e author 
773 |t Quaternary Science Reviews