Towards constraining soil and vegetation dynamics in land surface models: Modeling ASCAT backscatter incidence-angle dependence with a Deep Neural Network

A Deep Neural Network (DNN) is used to estimate the Advanced Scatterometer (ASCAT) C-band microwave normalized backscatter (σ40o), slope (σ′) and curvature (σ″) over France. The Interactions between Soil, Biosphere and Atmosphere (ISBA) land surface model (LSM) is used to produce land surface variab...

Full description

Bibliographic Details
Main Authors: Albergel, C. (Author), Bonan, B. (Author), Calvet, J.-C (Author), Georgievska, S. (Author), Hahn, S. (Author), Huber, M. (Author), Ku, O. (Author), Shan, X. (Author), Steele-Dunne, S. (Author), Wagner, W. (Author)
Format: Article
Language:English
Published: Elsevier Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03234nam a2200529Ia 4500
001 10.1016-j.rse.2022.113116
008 220718s2022 CNT 000 0 und d
020 |a 00344257 (ISSN) 
245 1 0 |a Towards constraining soil and vegetation dynamics in land surface models: Modeling ASCAT backscatter incidence-angle dependence with a Deep Neural Network 
260 0 |b Elsevier Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.rse.2022.113116 
520 3 |a A Deep Neural Network (DNN) is used to estimate the Advanced Scatterometer (ASCAT) C-band microwave normalized backscatter (σ40o), slope (σ′) and curvature (σ″) over France. The Interactions between Soil, Biosphere and Atmosphere (ISBA) land surface model (LSM) is used to produce land surface variables (LSVs) that are input to the DNN. The DNN is trained to simulate σ40o, σ′ and σ″ from 2007 to 2016. The predictive skill of the DNN is evaluated during an independent validation period from 2017 to 2019. Normalized sensitivity coefficients (NSCs) are computed to study the sensitivity of ASCAT observables to changes in LSVs as a function of time and space. Model performance yields a near-zeros bias in σ40o and σ′. The domain-averaged values of ρ are 0.84 and 0.85 for σ40o and σ′, compared to 0.58 for σ″. The domain-averaged unbiased RMSE is 8.6% of the dynamic range for σ40o and 13% for σ′, with land cover having some impact on model performance. NSC results show that the DNN-based model could reproduce the physical response of ASCAT observables to changes in LSVs. Results indicated that σ40o is sensitive to surface soil moisture and LAI and that these sensitivities vary with time, and are highly dependent on land cover type. The σ′ was shown to be sensitive to LAI, but also to root zone soil moisture due to the dependence of vegetation water content on soil moisture. The DNN could potentially serve as an observation operator in data assimilation to constrain soil and vegetation water dynamics in LSMs. © 2022 The Author(s) 
650 0 4 |a Advanced scatterometers 
650 0 4 |a ASCAT 
650 0 4 |a Backscattering 
650 0 4 |a Deep Neural Network 
650 0 4 |a Deep neural networks 
650 0 4 |a Dynamics 
650 0 4 |a Land surface 
650 0 4 |a Land surface model 
650 0 4 |a Land surface models 
650 0 4 |a Machine learning 
650 0 4 |a Machine-learning 
650 0 4 |a Meteorological instruments 
650 0 4 |a Normalised sensitivity coefficients 
650 0 4 |a Plant water 
650 0 4 |a Plant water dynamic 
650 0 4 |a Plant water dynamics 
650 0 4 |a Radar 
650 0 4 |a Scatterometry 
650 0 4 |a Soil moisture 
650 0 4 |a Surface measurement 
650 0 4 |a Surface variables 
650 0 4 |a Vegetation 
650 0 4 |a Water content 
650 0 4 |a Water dynamics 
700 1 |a Albergel, C.  |e author 
700 1 |a Bonan, B.  |e author 
700 1 |a Calvet, J.-C.  |e author 
700 1 |a Georgievska, S.  |e author 
700 1 |a Hahn, S.  |e author 
700 1 |a Huber, M.  |e author 
700 1 |a Ku, O.  |e author 
700 1 |a Shan, X.  |e author 
700 1 |a Steele-Dunne, S.  |e author 
700 1 |a Wagner, W.  |e author 
773 |t Remote Sensing of Environment