On the reduction of general relativity to Newtonian gravitation

Intertheoretic reduction in physics aspires to be both to be explanatory and perfectly general: it endeavors to explain why an older, simpler theory continues to be as successful as it is in terms of a newer, more sophisticated theory, and it aims to relate or otherwise account for as many features...

Full description

Bibliographic Details
Main Author: Fletcher, S.C (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2019
Online Access:View Fulltext in Publisher
Description
Summary:Intertheoretic reduction in physics aspires to be both to be explanatory and perfectly general: it endeavors to explain why an older, simpler theory continues to be as successful as it is in terms of a newer, more sophisticated theory, and it aims to relate or otherwise account for as many features of the two theories as possible. Despite often being introduced as straightforward cases of intertheoretic reduction, candidate accounts of the reduction of general relativity to Newtonian gravitation have either been insufficiently general or rigorous, or have not clearly been able to explain the empirical success of Newtonian gravitation. Building on work by Ehlers and others, I propose a different account of the reduction relation that is perfectly general and meets the explanatory demand one would make of it. In doing so, I highlight the role that a topology on the collection of all spacetimes plays in defining the relation, and how the selection of the topology corresponds with broader or narrower classes of observables that one demands be well-approximated in the limit. © 2019 Elsevier Ltd
ISBN:13552198 (ISSN)
DOI:10.1016/j.shpsb.2019.04.005