New organic electrode materials for lithium batteries produced by condensation of cyclohexanehexone with p-phenylenediamine

The redox-active materials based on the condensation product of cyclohexanehexone with p-phenylenediamine (PTDA) were synthesized. The effect of the reactant ratios (1: n, n = 1, 2, 3) on the morphology and electrochemical properties of the resulting polymers PTDA1-PTDA3 was analyzed. In the case of...

Full description

Bibliographic Details
Main Authors: Baymuratova, G.R (Author), Shestakov, A.F (Author), Slesarenko, A.A (Author), Troshin, P.A (Author), Tulibaeva, G.Z (Author), Vasil'ev, S.G (Author), Yakuschenko, I.K (Author), Yarmolenko, O.V (Author), Yudina, A.V (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02500nam a2200517Ia 4500
001 10.1016-j.synthmet.2022.117113
008 220718s2022 CNT 000 0 und d
020 |a 03796779 (ISSN) 
245 1 0 |a New organic electrode materials for lithium batteries produced by condensation of cyclohexanehexone with p-phenylenediamine 
260 0 |b Elsevier Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.synthmet.2022.117113 
520 3 |a The redox-active materials based on the condensation product of cyclohexanehexone with p-phenylenediamine (PTDA) were synthesized. The effect of the reactant ratios (1: n, n = 1, 2, 3) on the morphology and electrochemical properties of the resulting polymers PTDA1-PTDA3 was analyzed. In the case of PTDA3, a regular network crosslinked by C[dbnd]N-C bonds is formed resulting in a significant increase in the practical capacity of this material from 160 to 285 mAh g−1 corresponding to a three-electron redox process. Quantum-chemical modeling was performed to clarify the peculiarities of the lithiation mechanism. It is shown that the best sites for lithium cation coordination are adjacent oxygen and nitrogen atoms or two nitrogen atoms. For all polymer structures, sequential redox lithiation-delithiation processes have been established. © 2022 The Authors 
650 0 4 |a Amines 
650 0 4 |a Aromatic compounds 
650 0 4 |a Condensation 
650 0 4 |a Crosslinking 
650 0 4 |a Cyclohexanehexone 
650 0 4 |a Electrode material 
650 0 4 |a Electrodes 
650 0 4 |a Lithium batteries 
650 0 4 |a Lithium battery 
650 0 4 |a Nitrogen 
650 0 4 |a Organic electrode material 
650 0 4 |a Organic electrode materials 
650 0 4 |a Organic electrodes 
650 0 4 |a Polycondensation 
650 0 4 |a Polycondensations 
650 0 4 |a P-phenylene diamines 
650 0 4 |a p-phenylenediamine 
650 0 4 |a P-phenylenediamine 
650 0 4 |a Quantum chemistry 
650 0 4 |a Quantum-chemical model 
650 0 4 |a Quantum-chemical modeling 
650 0 4 |a Redox process 
650 0 4 |a Redox reactions 
650 0 4 |a Triquinoyl 
700 1 |a Baymuratova, G.R.  |e author 
700 1 |a Shestakov, A.F.  |e author 
700 1 |a Slesarenko, A.A.  |e author 
700 1 |a Troshin, P.A.  |e author 
700 1 |a Tulibaeva, G.Z.  |e author 
700 1 |a Vasil'ev, S.G.  |e author 
700 1 |a Yakuschenko, I.K.  |e author 
700 1 |a Yarmolenko, O.V.  |e author 
700 1 |a Yudina, A.V.  |e author 
773 |t Synthetic Metals