Therapeutic Ultrasound Parameter Optimization for Drug Delivery Applied to a Murine Model of Hepatocellular Carcinoma

Ultrasound and microbubble (USMB)-mediated drug delivery is a valuable tool for increasing the efficiency of the delivery of therapeutic agents to cancer while maintaining low systemic toxicity. Typically, selection of USMB drug delivery parameters used in current research settings are either based...

Full description

Bibliographic Details
Main Authors: Bachawal, S. (Author), Bose, J.C (Author), Dahl, J.J (Author), Kumar, S.U (Author), Paulmurugan, R. (Author), Telichko, A.V (Author), Wang, H. (Author)
Format: Article
Language:English
Published: Elsevier Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 05195nam a2201249Ia 4500
001 10.1016-j.ultrasmedbio.2020.09.009
008 220427s2021 CNT 000 0 und d
020 |a 03015629 (ISSN) 
245 1 0 |a Therapeutic Ultrasound Parameter Optimization for Drug Delivery Applied to a Murine Model of Hepatocellular Carcinoma 
260 0 |b Elsevier Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ultrasmedbio.2020.09.009 
520 3 |a Ultrasound and microbubble (USMB)-mediated drug delivery is a valuable tool for increasing the efficiency of the delivery of therapeutic agents to cancer while maintaining low systemic toxicity. Typically, selection of USMB drug delivery parameters used in current research settings are either based on previous studies described in the literature or optimized using tissue-mimicking phantoms. However, phantoms rarely mimic in vivo tumor environments, and the selection of parameters should be based on the application or experiment. In the following study, we optimized the therapeutic parameters of the ultrasound drug delivery system to achieve the most efficient in vivo drug delivery using fluorescent semiconducting polymer nanoparticles as a model nanocarrier. We illustrate that voltage, pulse repetition frequency and treatment time (i.e., number of ultrasound pulses per therapy area) delivered to the tumor can successfully be optimized in vivo to ensure effective delivery of the semiconducting polymer nanoparticles to models of hepatocellular carcinoma. The optimal in vivo parameters for USMB drug delivery in this study were 70 V (peak negative pressure = 3.4 MPa, mechanical index = 1.22), 1-Hz pulse repetition frequency and 100-s therapy time. USMB-mediated drug delivery using in vivo optimized ultrasound parameters caused an up to 2.2-fold (p < 0.01) increase in drug delivery to solid tumors compared with that using phantom-optimized ultrasound parameters. © 2020 World Federation for Ultrasound in Medicine & Biology 
650 0 4 |a 1,2 distearoyl sn glycero 3 phosphoethanolamine (polyethylene glycol) 2000 
650 0 4 |a animal 
650 0 4 |a animal experiment 
650 0 4 |a animal model 
650 0 4 |a animal tissue 
650 0 4 |a Animals 
650 0 4 |a antineoplastic agent 
650 0 4 |a Article 
650 0 4 |a br 38 
650 0 4 |a calibration 
650 0 4 |a Calibration 
650 0 4 |a cancer chemotherapy 
650 0 4 |a cancer transplantation 
650 0 4 |a Carcinoma, Hepatocellular 
650 0 4 |a continuous infusion 
650 0 4 |a Controlled drug delivery 
650 0 4 |a controlled study 
650 0 4 |a devices 
650 0 4 |a disease model 
650 0 4 |a Disease Models, Animal 
650 0 4 |a Drug delivery 
650 0 4 |a drug delivery system 
650 0 4 |a Drug delivery system 
650 0 4 |a Drug Delivery Systems 
650 0 4 |a echo contrast medium 
650 0 4 |a electric potential 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a fluorescence 
650 0 4 |a Fluorescence 
650 0 4 |a Functional polymers 
650 0 4 |a Hep G2 Cells 
650 0 4 |a Hepatocellular carcinoma 
650 0 4 |a Hepatocellular carcinoma 
650 0 4 |a Hep-G2 cell line 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a Humans 
650 0 4 |a in vivo study 
650 0 4 |a liver cell carcinoma 
650 0 4 |a liver cell carcinoma 
650 0 4 |a Liver Neoplasms 
650 0 4 |a liver tumor 
650 0 4 |a macrogol 
650 0 4 |a Mice 
650 0 4 |a microbubble 
650 0 4 |a Microbubbles 
650 0 4 |a Microbubbles 
650 0 4 |a micromarker 
650 0 4 |a mouse 
650 0 4 |a mouse model 
650 0 4 |a nanocarrier 
650 0 4 |a Nanoparticles 
650 0 4 |a necrosis 
650 0 4 |a Necrosis 
650 0 4 |a Neoplasm Transplantation 
650 0 4 |a nonhuman 
650 0 4 |a pathology 
650 0 4 |a perflutren 
650 0 4 |a Phantoms 
650 0 4 |a poly[2,7 (9,9 dioctylfluorene) alt 4,7 bis(thiophen 2 yl)benzo 2,1,3 thiadiazole] 
650 0 4 |a polyglactin 
650 0 4 |a polymer nanoparticle 
650 0 4 |a priority journal 
650 0 4 |a Pulse repetition frequencies 
650 0 4 |a quantum dot 
650 0 4 |a Quantum Dots 
650 0 4 |a Semiconducting polymer nanoparticles 
650 0 4 |a Sonoporation 
650 0 4 |a sulfur hexafluoride 
650 0 4 |a Systemic toxicities 
650 0 4 |a Targeted drug delivery 
650 0 4 |a Therapeutic ultrasound 
650 0 4 |a Therapy 
650 0 4 |a Tissue mimicking phantom 
650 0 4 |a tumor microenvironment 
650 0 4 |a Tumors 
650 0 4 |a Ultrasonic measurement 
650 0 4 |a Ultrasonic Therapy 
650 0 4 |a Ultrasonic Waves 
650 0 4 |a ultrasound 
650 0 4 |a Ultrasound 
650 0 4 |a Ultrasound parameters 
650 0 4 |a ultrasound targeted microbubble destruction 
650 0 4 |a ultrasound therapy 
650 0 4 |a ultrasound therapy 
650 0 4 |a unclassified drug 
700 1 |a Bachawal, S.  |e author 
700 1 |a Bose, J.C.  |e author 
700 1 |a Dahl, J.J.  |e author 
700 1 |a Kumar, S.U.  |e author 
700 1 |a Paulmurugan, R.  |e author 
700 1 |a Telichko, A.V.  |e author 
700 1 |a Wang, H.  |e author 
773 |t Ultrasound in Medicine and Biology