Estimating Arterial Wall Deformations from Automatic Key-Point Detection and Matching

Assessing arterial-wall motion and deformations may reveal pathologic alterations in biomechanical properties of the parietal tissues and, thus, contribute to the detection of vascular disease onset. Ultrasound image sequences allow the observation of this motion and many methods have been developed...

Full description

Bibliographic Details
Main Authors: Orkisz, M. (Author), Qorchi, S. (Author), Vray, D. (Author)
Format: Article
Language:English
Published: Elsevier Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03088nam a2200589Ia 4500
001 10.1016-j.ultrasmedbio.2021.01.001
008 220427s2021 CNT 000 0 und d
020 |a 03015629 (ISSN) 
245 1 0 |a Estimating Arterial Wall Deformations from Automatic Key-Point Detection and Matching 
260 0 |b Elsevier Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ultrasmedbio.2021.01.001 
520 3 |a Assessing arterial-wall motion and deformations may reveal pathologic alterations in biomechanical properties of the parietal tissues and, thus, contribute to the detection of vascular disease onset. Ultrasound image sequences allow the observation of this motion and many methods have been developed to estimate temporal changes in artery diameter and wall thickness and to track 2-D displacements of selected points. Some methods enable the assessment of shearing or stretching within the wall, but none of them can estimate all these deformations simultaneously. The method herein proposed was devised to simultaneously estimate translation, compression, stretching and shearing of the arterial wall in ultrasound B-mode image sequences representing the carotid artery longitudinal section. Salient blob-like patterns, called key points, are automatically detected in each frame and matched between successive frames. A robust estimator based on an affine transformation model is then used to assess frame-to-frame motion explaining at best the key-point matches and to reject outliers. Realistic simulated image sequences were used to evaluate the accuracy and robustness of the method against ground truth. The method was also visually assessed on clinical image sequences, for which true deformations are unknown. © 2021 World Federation for Ultrasound in Medicine & Biology 
650 0 4 |a 2-D displacement 
650 0 4 |a Affine transformations 
650 0 4 |a arterial wall deformation 
650 0 4 |a Arterial wall motion 
650 0 4 |a Article 
650 0 4 |a automation 
650 0 4 |a B scan 
650 0 4 |a Biomechanical properties 
650 0 4 |a blood vessel parameters 
650 0 4 |a Carotid Arteries 
650 0 4 |a carotid artery 
650 0 4 |a Carotid artery 
650 0 4 |a controlled study 
650 0 4 |a Deformation 
650 0 4 |a diagnostic imaging 
650 0 4 |a echography 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a image analysis 
650 0 4 |a Longitudinal section 
650 0 4 |a major clinical study 
650 0 4 |a measurement accuracy 
650 0 4 |a motion 
650 0 4 |a Motion 
650 0 4 |a Motion estimation 
650 0 4 |a physiology 
650 0 4 |a priority journal 
650 0 4 |a Robust estimators 
650 0 4 |a Shearing 
650 0 4 |a Simulated images 
650 0 4 |a simulation 
650 0 4 |a Ultrasonic applications 
650 0 4 |a Ultrasonography 
650 0 4 |a Ultrasound 
650 0 4 |a Ultrasound image sequences 
650 0 4 |a Vascular disease 
700 1 |a Orkisz, M.  |e author 
700 1 |a Qorchi, S.  |e author 
700 1 |a Vray, D.  |e author 
773 |t Ultrasound in Medicine and Biology