Assessing passive scalar dynamics in bubble-induced turbulence using direct numerical simulations

By using direct numerical simulations (DNS) of bubbly flows with passive scalars, we show a transition in the scalar spectra from a k-5/3 to a k-3 scaling with the wavenumber k, in contrast with those of single-phase isotropic turbulence. For cases with a mean scalar gradient in the horizontal direc...

Full description

Bibliographic Details
Main Authors: Hidman, N. (Author), Sardina, G. (Author), Sasic, S. (Author), Ström, H. (Author)
Format: Article
Language:English
Published: Cambridge University Press 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02870nam a2200397Ia 4500
001 10.1017-jfm.2023.307
008 230526s2023 CNT 000 0 und d
020 |a 00221120 (ISSN) 
245 1 0 |a Assessing passive scalar dynamics in bubble-induced turbulence using direct numerical simulations 
260 0 |b Cambridge University Press  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1017/jfm.2023.307 
520 3 |a By using direct numerical simulations (DNS) of bubbly flows with passive scalars, we show a transition in the scalar spectra from a k-5/3 to a k-3 scaling with the wavenumber k, in contrast with those of single-phase isotropic turbulence. For cases with a mean scalar gradient in the horizontal direction, the scalar spectrum decays faster than at high wavenumbers. While the k-3 scaling is well established in the bubbly flow velocity spectrum, the scalar spectrum behaviour is not fully understood. We find that the transition length scale of the scalar spectra is comparable to or below the bubble diameter and decreases with the molecular diffusivity of the scalar in the liquid. We use DNS to compute the scalar spectrum budget and show that the scalar fluctuations are produced by the mean scalar gradient at length scales above the bubble diameter, contrary to the velocity fluctuations. At length scales below the bubble diameter, the net scalar transfer scales as k-1 inducing the k-3 scaling of the scalar spectra. This finding is consistent with the hypothesis proposed by Dung et al. (J. Fluid Mech., vol. 958, 2023, p. A5) about the physical mechanism behind the k-3 scaling. We also show dependencies of the bubble suspension's convective scalar diffusivity on the gas volume fraction and molecular diffusivity that differ based on the direction of the mean scalar gradient. For a mean scalar gradient in the vertical direction, we find and qualitatively explain a significant effect of the molecular diffusivity in the gas on the convective scalar diffusivity. © The Author(s), 2023. Published by Cambridge University Press. 
650 0 4 |a Bubble diameter 
650 0 4 |a bubble dynamics 
650 0 4 |a Bubble dynamics 
650 0 4 |a Budget control 
650 0 4 |a Diffusion 
650 0 4 |a Direct numerical simulation 
650 0 4 |a Direct-numerical-simulation 
650 0 4 |a Flow velocity 
650 0 4 |a Gas liquid flows 
650 0 4 |a gas/liquid flow 
650 0 4 |a Length scale 
650 0 4 |a Molecular diffusivity 
650 0 4 |a Numerical models 
650 0 4 |a Scalar gradients 
650 0 4 |a Scalar spectrum 
650 0 4 |a Scalings 
650 0 4 |a Turbulence 
650 0 4 |a turbulent mixing 
650 0 4 |a Turbulent mixing 
700 1 0 |a Hidman, N.  |e author 
700 1 0 |a Sardina, G.  |e author 
700 1 0 |a Sasic, S.  |e author 
700 1 0 |a Ström, H.  |e author 
773 |t Journal of Fluid Mechanics  |x 00221120 (ISSN)  |g 962