Giant Effects of Interlayer Interaction on Valence-Band Splitting in Transition Metal Dichalcogenides

Understanding the origin of valence band maxima (VBM) splitting in transition metal dichalcogenides (TMDs) is important because it governs the unique spin and valley physics in monolayer and multilayer TMDs. In this work, we present our systematic study of VBM splitting (Δ) in atomically thin MoS2an...

Full description

Bibliographic Details
Main Authors: Benson, G. (Author), Blei, M. (Author), Border, N. (Author), Ichimura, A. (Author), Kc, S. (Author), Newaz, A. (Author), Salavati-Fard, T. (Author), Taniguchi, T. (Author), Tongay, S. (Author), Wang, B. (Author), Watanabe, K. (Author), Yumigeta, K. (Author), Zurdo Costa, V. (Author)
Format: Article
Language:English
Published: American Chemical Society 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02869nam a2200505Ia 4500
001 10.1021-acs.jpcc.1c10631
008 220706s2022 CNT 000 0 und d
020 |a 19327447 (ISSN) 
245 1 0 |a Giant Effects of Interlayer Interaction on Valence-Band Splitting in Transition Metal Dichalcogenides 
260 0 |b American Chemical Society  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1021/acs.jpcc.1c10631 
520 3 |a Understanding the origin of valence band maxima (VBM) splitting in transition metal dichalcogenides (TMDs) is important because it governs the unique spin and valley physics in monolayer and multilayer TMDs. In this work, we present our systematic study of VBM splitting (Δ) in atomically thin MoS2and WS2by employing photocurrent spectroscopy. We found that VBM splitting in monolayer MoS2and WS2depends strongly on temperature, which contradicts the theory that spin-orbit coupling solely determines the VBM splitting in a monolayer TMD. We also found that the rate of change of VBM splitting with respect to temperature (m=∂Δ∂T) is the highest for monolayer (-0.14 meV/K for MoS2) and the rate decreases as the layer number increases (m ≈ 0 meV/K for 5 layers MOS2). Our density functional theory (DFT) and the GW with Bethe-Salpeter Equation (GW-BSE) simulations agree with the experimental observations and demonstrate that the temperature dependence of VBM splitting in monolayer and multilayer TMDs originates from the changes in the interlayer coupling strength between the neighboring layers and substrates. We also found that VBM splitting depends on the layer numbers and the type of transition metals. © 2022 American Chemical Society. All rights reserved. 
650 0 4 |a Density functional theory 
650 0 4 |a Dichalcogenides 
650 0 4 |a Interlayer interactions 
650 0 4 |a Layer number 
650 0 4 |a Layered semiconductors 
650 0 4 |a Molybdenum compounds 
650 0 4 |a Monolayers 
650 0 4 |a Multilayers 
650 0 4 |a Photocurrent spectroscopy 
650 0 4 |a Rate of change 
650 0 4 |a Spin-orbit couplings 
650 0 4 |a Splittings 
650 0 4 |a Systematic study 
650 0 4 |a Temperature distribution 
650 0 4 |a Transition metals 
650 0 4 |a Tungsten compounds 
650 0 4 |a Valence bands 
650 0 4 |a Valence-band maximums 
650 0 4 |a Valence-band splitting 
700 1 |a Benson, G.  |e author 
700 1 |a Blei, M.  |e author 
700 1 |a Border, N.  |e author 
700 1 |a Ichimura, A.  |e author 
700 1 |a Kc, S.  |e author 
700 1 |a Newaz, A.  |e author 
700 1 |a Salavati-Fard, T.  |e author 
700 1 |a Taniguchi, T.  |e author 
700 1 |a Tongay, S.  |e author 
700 1 |a Wang, B.  |e author 
700 1 |a Watanabe, K.  |e author 
700 1 |a Yumigeta, K.  |e author 
700 1 |a Zurdo Costa, V.  |e author 
773 |t Journal of Physical Chemistry C