The FastEddy® Resident-GPU Accelerated Large-Eddy Simulation Framework: Moist Dynamics Extension, Validation and Sensitivities of Modeling Non-Precipitating Shallow Cumulus Clouds

Herein we describe the moist dynamics formulation implemented within the graphics processing unit-resident large-eddy simulation FastEddy® model, which includes a simple saturation adjustment scheme for condensation and evaporation processes. Two LES model intercomparison exercises for non-precipita...

Full description

Bibliographic Details
Main Authors: Grabowski, W.W (Author), Jensen, A.A (Author), Muñoz-Esparza, D. (Author), Sauer, J.A (Author), Xue, L. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03295nam a2200505Ia 4500
001 10.1029-2021MS002904
008 220510s2022 CNT 000 0 und d
020 |a 19422466 (ISSN) 
245 1 0 |a The FastEddy® Resident-GPU Accelerated Large-Eddy Simulation Framework: Moist Dynamics Extension, Validation and Sensitivities of Modeling Non-Precipitating Shallow Cumulus Clouds 
260 0 |b John Wiley and Sons Inc  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1029/2021MS002904 
520 3 |a Herein we describe the moist dynamics formulation implemented within the graphics processing unit-resident large-eddy simulation FastEddy® model, which includes a simple saturation adjustment scheme for condensation and evaporation processes. Two LES model intercomparison exercises for non-precipitating shallow cumulus clouds are simulated in order to validate this model extension, including a static forcing and a time-dependent forcing case. Overall, we find our dynamical, thermodynamical and microphysical quantities, along with turbulence variability and fluxes, to be commensurate with the corresponding model intercomparison results. In addition, sensitivities to specific model settings are investigated. Among these settings, it is shown that boundary layer and cloud layer structure and characteristics are sensitive to use of higher-order advection schemes impacting the vertical distribution of cloud content and associated turbulence statistics. Increasing the timescale of the saturation scheme leads to enhanced liquid water presence and decreases vertical velocity variance within the cloud deck. In some cases, these sensitivities agree with the model-to-model variability reported in the intercomparison exercises, highlighting the important role of specific model implementation choices in the context of shallow cumulus convection simulations. These analyses and findings also provide the basis for future extensions and applications of FastEddy® for modeling moist convection and precipitation scenarios. © 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. 
650 0 4 |a Advection 
650 0 4 |a ARM processors 
650 0 4 |a Atmospheric thermodynamics 
650 0 4 |a BOMEX 
650 0 4 |a BOMEX 
650 0 4 |a Boundary layers 
650 0 4 |a Clouds 
650 0 4 |a Computer graphics 
650 0 4 |a Fasteddy® 
650 0 4 |a FastEddy® 
650 0 4 |a Forcings 
650 0 4 |a Graphics processing unit 
650 0 4 |a Higher order statistics 
650 0 4 |a Intercomparison exercise 
650 0 4 |a Large eddy simulation 
650 0 4 |a large-eddy simulation 
650 0 4 |a Large-eddy simulations 
650 0 4 |a Model inter comparisons 
650 0 4 |a moist dynamics 
650 0 4 |a Moist dynamics 
650 0 4 |a Program processors 
650 0 4 |a SGP-ARM 
650 0 4 |a SGP-ARM 
650 0 4 |a Shallow cumulus clouds 
650 0 4 |a shallow cumulus convection 
650 0 4 |a Shallow cumulus convection 
650 0 4 |a Turbulence 
700 1 |a Grabowski, W.W.  |e author 
700 1 |a Jensen, A.A.  |e author 
700 1 |a Muñoz-Esparza, D.  |e author 
700 1 |a Sauer, J.A.  |e author 
700 1 |a Xue, L.  |e author 
773 |t Journal of Advances in Modeling Earth Systems