A nanoforest-based humidity sensor for respiration monitoring

Traditional humidity sensors for respiration monitoring applications have faced technical challenges, including low sensitivity, long recovery times, high parasitic capacitance and uncalibrated temperature drift. To overcome these problems, we present a triple-layer humidity sensor that comprises a...

Full description

Bibliographic Details
Main Authors: Chen, D. (Author), Chen, G. (Author), Dai, X. (Author), Guan, R. (Author), Li, H. (Author), Mao, H. (Author), Shi, M. (Author), Zhou, N. (Author)
Format: Article
Language:English
Published: Springer Nature 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02542nam a2200421Ia 4500
001 10.1038-s41378-022-00372-4
008 220510s2022 CNT 000 0 und d
020 |a 20557434 (ISSN) 
245 1 0 |a A nanoforest-based humidity sensor for respiration monitoring 
260 0 |b Springer Nature  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41378-022-00372-4 
520 3 |a Traditional humidity sensors for respiration monitoring applications have faced technical challenges, including low sensitivity, long recovery times, high parasitic capacitance and uncalibrated temperature drift. To overcome these problems, we present a triple-layer humidity sensor that comprises a nanoforest-based sensing capacitor, a thermistor, a microheater and a reference capacitor. When compared with traditional polyimide-based humidity sensors, this novel device has a sensitivity that is improved significantly by 8 times within a relative humidity range of 40–90%. Additionally, the integration of the microheater into the sensor can help to reduce its recovery time to 5 s. The use of the reference capacitor helps to eliminate parasitic capacitance, and the thermistor helps the sensor obtain a higher accuracy. These unique design aspects cause the sensor to have an excellent humidity sensing performance in respiration monitoring applications. Furthermore, through the adoption of machine learning algorithms, the sensor can distinguish different respiration states with an accuracy of 94%. Therefore, this humidity sensor design is expected to be used widely in both consumer electronics and intelligent medical instrument applications. © 2022, The Author(s). 
650 0 4 |a Capacitance 
650 0 4 |a Heating equipment 
650 0 4 |a Humidity sensors 
650 0 4 |a Learning algorithms 
650 0 4 |a Low sensitivity 
650 0 4 |a Machine learning 
650 0 4 |a Microelectromechanical devices 
650 0 4 |a Microheater 
650 0 4 |a Monitoring applications 
650 0 4 |a Parasitics capacitance 
650 0 4 |a Recovery time 
650 0 4 |a Respiration monitoring 
650 0 4 |a Sensing capacitors 
650 0 4 |a Technical challenges 
650 0 4 |a Temperature drifts 
650 0 4 |a Thermistors 
650 0 4 |a Uncalibrated 
700 1 |a Chen, D.  |e author 
700 1 |a Chen, G.  |e author 
700 1 |a Dai, X.  |e author 
700 1 |a Guan, R.  |e author 
700 1 |a Li, H.  |e author 
700 1 |a Mao, H.  |e author 
700 1 |a Shi, M.  |e author 
700 1 |a Zhou, N.  |e author 
773 |t Microsystems and Nanoengineering