Single-cell system using monolithic PMUTs-on-CMOS to monitor fluid hydrodynamic properties

In this work, a single cell capable of monitoring fluid density, viscosity, sound velocity, and compressibility with a compact and small design is presented. The fluid measurement system is formed by a two-port AlScN piezoelectric micromachined ultrasonic transducer (PMUT) with an 80 μm length monol...

Full description

Bibliographic Details
Main Authors: Barniol, N. (Author), Ledesma, E. (Author), Uranga, A. (Author), Yanez, J. (Author), Zamora, I. (Author)
Format: Article
Language:English
Published: Springer Nature 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02507nam a2200433Ia 4500
001 10.1038-s41378-022-00413-y
008 220718s2022 CNT 000 0 und d
020 |a 20557434 (ISSN) 
245 1 0 |a Single-cell system using monolithic PMUTs-on-CMOS to monitor fluid hydrodynamic properties 
260 0 |b Springer Nature  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41378-022-00413-y 
520 3 |a In this work, a single cell capable of monitoring fluid density, viscosity, sound velocity, and compressibility with a compact and small design is presented. The fluid measurement system is formed by a two-port AlScN piezoelectric micromachined ultrasonic transducer (PMUT) with an 80 μm length monolithically fabricated with a 130 nm complementary metal-oxide semiconductor (CMOS) process. The electrode configuration allows the entire system to be implemented in a single device, where one electrode is used as an input and the other as an output. Experimental verification was carried out by exploiting the features of piezoelectric devices such as resonators and acoustic transducers, where a frequency shift and amplitude variation are expected because of a change in density and viscosity. A sensitivity of 482 ± 14 Hz/kg/m3 demonstrates the potential of the system compared to other dual-electrode PMUTs. In addition, according to the acoustic measurement, the sound velocity, fluid compressibility, and viscosity coefficient can be extracted, which, to the best of our knowledge, is novel in these PMUT systems. © 2022, The Author(s). 
650 0 4 |a Acoustic resonators 
650 0 4 |a Acoustic wave velocity 
650 0 4 |a CMOS integrated circuits 
650 0 4 |a Complementary metal oxide semiconductors 
650 0 4 |a Electrodes 
650 0 4 |a Fluid densities 
650 0 4 |a Fluid hydrodynamic 
650 0 4 |a Fluid measurement 
650 0 4 |a Hydrodynamic properties 
650 0 4 |a Metals 
650 0 4 |a Micro-machined ultrasonic transducer 
650 0 4 |a Monolithics 
650 0 4 |a MOS devices 
650 0 4 |a Nitrogen compounds 
650 0 4 |a Oxide semiconductors 
650 0 4 |a Piezoelectric 
650 0 4 |a Piezoelectricity 
650 0 4 |a Single cell systems 
650 0 4 |a Single cells 
650 0 4 |a Ultrasonic transducers 
650 0 4 |a Viscosity 
700 1 |a Barniol, N.  |e author 
700 1 |a Ledesma, E.  |e author 
700 1 |a Uranga, A.  |e author 
700 1 |a Yanez, J.  |e author 
700 1 |a Zamora, I.  |e author 
773 |t Microsystems and Nanoengineering