Atomistic mechanism of phase transformation between topologically close-packed complex intermetallics

Understanding how topologically close-packed phases (TCPs) transform between one another is one of the challenging puzzles in solid-state transformations. Here we use atomic-resolved tools to dissect the transition among TCPs, specifically the μ and P (or σ) phases in nickel-based superalloys. We di...

Full description

Bibliographic Details
Main Authors: Han, X. (Author), Jin, H. (Author), Li, P. (Author), Li, W. (Author), Long, H. (Author), Ma, E. (Author), Qin, J. (Author), Shao, R. (Author), Wang, L. (Author), Zhang, J. (Author), Zhang, W. (Author), Zhang, Y. (Author), Zhang, Z. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Online Access:View Fulltext in Publisher
LEADER 01956nam a2200277Ia 4500
001 10.1038-s41467-022-30040-0
008 220706s2022 CNT 000 0 und d
020 |a 20411723 (ISSN) 
245 1 0 |a Atomistic mechanism of phase transformation between topologically close-packed complex intermetallics 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41467-022-30040-0 
520 3 |a Understanding how topologically close-packed phases (TCPs) transform between one another is one of the challenging puzzles in solid-state transformations. Here we use atomic-resolved tools to dissect the transition among TCPs, specifically the μ and P (or σ) phases in nickel-based superalloys. We discover that the P phase originates from intrinsic (110) faulted twin boundaries (FTB), which according to first-principles calculations is of extraordinarily low energy. The FTB sets up a pathway for the diffusional in-flux of the smaller 3d transition metal species, creating a Frank interstitial dislocation loop. The climb of this dislocation, with an unusual Burgers vector that displaces neighboring atoms into the lattice positions of the product phase, accomplishes the structural transformation. Our findings reveal an intrinsic link among these seemingly unrelated TCP configurations, explain the role of internal lattice defects in facilitating the phase transition, and offer useful insight for alloy design that involves different complex phases. © 2022, The Author(s). 
700 1 0 |a Han, X.  |e author 
700 1 0 |a Jin, H.  |e author 
700 1 0 |a Li, P.  |e author 
700 1 0 |a Li, W.  |e author 
700 1 0 |a Long, H.  |e author 
700 1 0 |a Ma, E.  |e author 
700 1 0 |a Qin, J.  |e author 
700 1 0 |a Shao, R.  |e author 
700 1 0 |a Wang, L.  |e author 
700 1 0 |a Zhang, J.  |e author 
700 1 0 |a Zhang, W.  |e author 
700 1 0 |a Zhang, Y.  |e author 
700 1 0 |a Zhang, Z.  |e author 
773 |t Nature Communications