Modeling antiphase boundary energies of Ni3Al-based alloys using automated density functional theory and machine learning

Antiphase boundaries (APBs) are planar defects that play a critical role in strengthening Ni-based superalloys, and their sensitivity to alloy composition offers a flexible tuning parameter for alloy design. Here, we report a computational workflow to enable the development of sufficient data to tra...

Full description

Bibliographic Details
Main Authors: Asta, M. (Author), Chen, E. (Author), Epler, M.E (Author), Frolov, T. (Author), Tamm, A. (Author), Wang, T. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02284nam a2200397Ia 4500
001 10.1038-s41524-022-00755-1
008 220510s2022 CNT 000 0 und d
020 |a 20573960 (ISSN) 
245 1 0 |a Modeling antiphase boundary energies of Ni3Al-based alloys using automated density functional theory and machine learning 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41524-022-00755-1 
520 3 |a Antiphase boundaries (APBs) are planar defects that play a critical role in strengthening Ni-based superalloys, and their sensitivity to alloy composition offers a flexible tuning parameter for alloy design. Here, we report a computational workflow to enable the development of sufficient data to train machine-learning (ML) models to automate the study of the effect of composition on the (111) APB energy in Ni3Al-based alloys. We employ ML to leverage this wealth of data and identify several physical properties that are used to build predictive models for the APB energy that achieve a cross-validation error of 0.033 J m−2. We demonstrate the transferability of these models by predicting APB energies in commercial superalloys. Moreover, our use of physically motivated features such as the ordering energy and stoichiometry-based features opens the way to using existing materials properties databases to guide superalloy design strategies to maximize the APB energy. © 2022, The Author(s). 
650 0 4 |a Alloy compositions 
650 0 4 |a Alloy designs 
650 0 4 |a Antiphase boundaries 
650 0 4 |a Antiphase boundary energies 
650 0 4 |a Computation theory 
650 0 4 |a Computational workflows 
650 0 4 |a Density functional theory 
650 0 4 |a Density-functional-theory 
650 0 4 |a Machine learning 
650 0 4 |a Machine learning models 
650 0 4 |a Materials properties 
650 0 4 |a Ni-based superalloys 
650 0 4 |a Nickel alloys 
650 0 4 |a Nickel compounds 
650 0 4 |a Planar defect 
650 0 4 |a Superalloys 
650 0 4 |a Tuning parameter 
700 1 |a Asta, M.  |e author 
700 1 |a Chen, E.  |e author 
700 1 |a Epler, M.E.  |e author 
700 1 |a Frolov, T.  |e author 
700 1 |a Tamm, A.  |e author 
700 1 |a Wang, T.  |e author 
773 |t npj Computational Materials