Coherence of a charge stabilised tin-vacancy spin in diamond

Quantum information processing (QIP) with solid state spin qubits strongly depends on the efficient initialisation of the qubit’s desired charge state. While the negatively charged tin-vacancy (SnV−) centre in diamond has emerged as an excellent platform for realising QIP protocols due to long spin...

Full description

Bibliographic Details
Main Authors: Becher, C. (Author), Colard, P.-O (Author), Fuchs, P. (Author), Görlitz, J. (Author), Hardeman, D. (Author), Hatano, M. (Author), Herrmann, D. (Author), Iwasaki, T. (Author), Markham, M. (Author), Rogalla, D. (Author), Taniguchi, T. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Tin
Online Access:View Fulltext in Publisher
LEADER 02452nam a2200433Ia 4500
001 10.1038-s41534-022-00552-0
008 220510s2022 CNT 000 0 und d
020 |a 20566387 (ISSN) 
245 1 0 |a Coherence of a charge stabilised tin-vacancy spin in diamond 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41534-022-00552-0 
520 3 |a Quantum information processing (QIP) with solid state spin qubits strongly depends on the efficient initialisation of the qubit’s desired charge state. While the negatively charged tin-vacancy (SnV−) centre in diamond has emerged as an excellent platform for realising QIP protocols due to long spin coherence times at liquid helium temperature and lifetime limited optical transitions, its usefulness is severely limited by termination of the fluorescence under resonant excitation. Here, we unveil the underlying charge cycle, potentially applicable to all group IV-vacancy (G4V) centres, and exploit it to demonstrate highly efficient and rapid initialisation of the desired negative charge state of single SnV centres while preserving long term stable optical resonances. In addition to investigating the optical coherence, we all-optically probe the coherence of the ground state spins by means of coherent population trapping and find a spin dephasing time of 5(1) μs. Furthermore, we demonstrate proof-of-principle single shot spin state readout without the necessity of a magnetic field aligned to the symmetry axis of the defect. © 2022, The Author(s). 
650 0 4 |a Charge state 
650 0 4 |a Ground state 
650 0 4 |a Group-IV 
650 0 4 |a Liquid helium temperature 
650 0 4 |a Negative charge 
650 0 4 |a Negatively charged 
650 0 4 |a Quantum information processing 
650 0 4 |a Quantum optics 
650 0 4 |a Qubits 
650 0 4 |a Resonant excitation 
650 0 4 |a Spin coherence time 
650 0 4 |a Spin qubit 
650 0 4 |a Superfluid helium 
650 0 4 |a Tin 
650 0 4 |a Tin vacancies 
700 1 |a Becher, C.  |e author 
700 1 |a Colard, P.-O.  |e author 
700 1 |a Fuchs, P.  |e author 
700 1 |a Görlitz, J.  |e author 
700 1 |a Hardeman, D.  |e author 
700 1 |a Hatano, M.  |e author 
700 1 |a Herrmann, D.  |e author 
700 1 |a Iwasaki, T.  |e author 
700 1 |a Markham, M.  |e author 
700 1 |a Rogalla, D.  |e author 
700 1 |a Taniguchi, T.  |e author 
773 |t npj Quantum Information