FAIR in action - a flexible framework to guide FAIRification

The COVID-19 pandemic has highlighted the need for FAIR (Findable, Accessible, Interoperable, and Reusable) data more than any other scientific challenge to date. We developed a flexible, multi-level, domain-agnostic FAIRification framework, providing practical guidance to improve the FAIRness for b...

Full description

Bibliographic Details
Main Authors: Abbassi-Daloii, T. (Author), Alharbi, E. (Author), Boiten, J.-W (Author), Burdett, T. (Author), Courtot, M. (Author), Emam, I. (Author), Gadiya, Y. (Author), Giessmann, R.T (Author), Goble, C. (Author), Gray, A.J.G (Author), Gribbon, P. (Author), Gu, W. (Author), Henderson, D. (Author), Ioannidis, V. (Author), Juty, N. (Author), Lynch, N. (Author), Reilly, D.S (Author), Rocca-Serra, P. (Author), Sansone, S.-A (Author), Satagopam, V. (Author), Strubel, J. (Author), Welter, D. (Author), Xu, F. (Author)
Format: Article
Language:English
Published: NLM (Medline) 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02342nam a2200493Ia 4500
001 10.1038-s41597-023-02167-2
008 230529s2023 CNT 000 0 und d
020 |a 20524463 (ISSN) 
245 1 0 |a FAIR in action - a flexible framework to guide FAIRification 
260 0 |b NLM (Medline)  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41597-023-02167-2 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159717611&doi=10.1038%2fs41597-023-02167-2&partnerID=40&md5=415e23b06cc1ee720ad4f8ba1230dfa7 
520 3 |a The COVID-19 pandemic has highlighted the need for FAIR (Findable, Accessible, Interoperable, and Reusable) data more than any other scientific challenge to date. We developed a flexible, multi-level, domain-agnostic FAIRification framework, providing practical guidance to improve the FAIRness for both existing and future clinical and molecular datasets. We validated the framework in collaboration with several major public-private partnership projects, demonstrating and delivering improvements across all aspects of FAIR and across a variety of datasets and their contexts. We therefore managed to establish the reproducibility and far-reaching applicability of our approach to FAIRification tasks. © 2023. The Author(s). 
650 0 4 |a Agnostic 
650 0 4 |a article 
650 0 4 |a FAIR principles 
650 0 4 |a fairness 
650 0 4 |a human 
650 0 4 |a public-private partnership 
650 0 4 |a reproducibility 
700 1 0 |a Abbassi-Daloii, T.  |e author 
700 1 0 |a Alharbi, E.  |e author 
700 1 0 |a Boiten, J.-W.  |e author 
700 1 0 |a Burdett, T.  |e author 
700 1 0 |a Courtot, M.  |e author 
700 1 0 |a Emam, I.  |e author 
700 1 0 |a Gadiya, Y.  |e author 
700 1 0 |a Giessmann, R.T.  |e author 
700 1 0 |a Goble, C.  |e author 
700 1 0 |a Gray, A.J.G.  |e author 
700 1 0 |a Gribbon, P.  |e author 
700 1 0 |a Gu, W.  |e author 
700 1 0 |a Henderson, D.  |e author 
700 1 0 |a Ioannidis, V.  |e author 
700 1 0 |a Juty, N.  |e author 
700 1 0 |a Lynch, N.  |e author 
700 1 0 |a Reilly, D.S.  |e author 
700 1 0 |a Rocca-Serra, P.  |e author 
700 1 0 |a Sansone, S.-A.  |e author 
700 1 0 |a Satagopam, V.  |e author 
700 1 0 |a Strubel, J.  |e author 
700 1 0 |a Welter, D.  |e author 
700 1 0 |a Xu, F.  |e author 
773 |t Scientific data