Predicting the formation of fractionally doped perovskite oxides by a function-confined machine learning method

Fractionally doped perovskites oxides (FDPOs) have demonstrated ubiquitous applications such as energy conversion, storage and harvesting, catalysis, sensor, superconductor, ferroelectric, piezoelectric, magnetic, and luminescence. Hence, an accurate, cost-effective, and easy-to-use methodology to d...

Full description

Bibliographic Details
Main Authors: Ding, F. (Author), Luo, F. (Author), Santomauro, A. (Author), Tong, J. (Author), Zhai, X. (Author), Zhao, Z. (Author)
Format: Article
Language:English
Published: Springer Nature 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02574nam a2200421Ia 4500
001 10.1038-s43246-022-00269-9
008 220718s2022 CNT 000 0 und d
020 |a 26624443 (ISSN) 
245 1 0 |a Predicting the formation of fractionally doped perovskite oxides by a function-confined machine learning method 
260 0 |b Springer Nature  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s43246-022-00269-9 
520 3 |a Fractionally doped perovskites oxides (FDPOs) have demonstrated ubiquitous applications such as energy conversion, storage and harvesting, catalysis, sensor, superconductor, ferroelectric, piezoelectric, magnetic, and luminescence. Hence, an accurate, cost-effective, and easy-to-use methodology to discover new compositions is much needed. Here, we developed a function-confined machine learning methodology to discover new FDPOs with high prediction accuracy from limited experimental data. By focusing on a specific application, namely solar thermochemical hydrogen production, we collected 632 training data and defined 21 desirable features. Our gradient boosting classifier model achieved a high prediction accuracy of 95.4% and a high F1 score of 0.921. Furthermore, when verified on additional 36 experimental data from existing literature, the model showed a prediction accuracy of 94.4%. With the help of this machine learning approach, we identified and synthesized 11 new FDPO compositions, 7 of which are relevant for solar thermochemical hydrogen production. We believe this confined machine learning methodology can be used to discover, from limited data, FDPOs with other specific application purposes. © 2022, The Author(s). 
650 0 4 |a Catalysis sensors 
650 0 4 |a Cost effective 
650 0 4 |a Cost effectiveness 
650 0 4 |a Digital storage 
650 0 4 |a Forecasting 
650 0 4 |a Hydrogen production 
650 0 4 |a Hydrogen storage 
650 0 4 |a Machine learning 
650 0 4 |a Machine learning methods 
650 0 4 |a Machine-learning 
650 0 4 |a Perovskite 
650 0 4 |a Perovskite oxides 
650 0 4 |a Piezoelectric 
650 0 4 |a Prediction accuracy 
650 0 4 |a Solar energy 
650 0 4 |a Solar power generation 
650 0 4 |a Solar thermo-chemical hydrogen 
650 0 4 |a Thermochemical hydrogen production 
650 0 4 |a Ubiquitous application 
700 1 |a Ding, F.  |e author 
700 1 |a Luo, F.  |e author 
700 1 |a Santomauro, A.  |e author 
700 1 |a Tong, J.  |e author 
700 1 |a Zhai, X.  |e author 
700 1 |a Zhao, Z.  |e author 
773 |t Communications Materials