Flexible solid-like electrolytes with ultrahigh conductivity and their applications in all-solid-state supercapacitors

All-solid-state supercapacitors (ASSS) with solid-state electrolytes (SSEs) can be used to overcome the liquid leakage problem in devices. However, ionic conduction in solid electrolytes is one of the barriers to further improvements in ASSS. This paper describes the fabrication of a flexible SSE co...

Full description

Bibliographic Details
Main Authors: Kumar, A. (Author), Lin, H.-Y (Author), Pattanayak, B. (Author), Tsai, H.-Y (Author), Tseng, T.-Y (Author), Winie, T. (Author), Yang, C.-C (Author)
Format: Article
Language:English
Published: Royal Society of Chemistry 2018
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02808nam a2200445Ia 4500
001 10.1039-c8ra04674c
008 220120s2018 CNT 000 0 und d
020 |a 20462069 (ISSN) 
245 1 0 |a Flexible solid-like electrolytes with ultrahigh conductivity and their applications in all-solid-state supercapacitors 
260 0 |b Royal Society of Chemistry  |c 2018 
490 1 |t RSC Advances 
650 0 4 |a All-solid-state supercapacitors 
650 0 4 |a Capacitance 
650 0 4 |a Charging/discharging 
650 0 4 |a Electrodes 
650 0 4 |a Electrolytic capacitors 
650 0 4 |a Ethylene 
650 0 4 |a Ethylene carbonate 
650 0 4 |a Fluorine compounds 
650 0 4 |a Ionic conduction in solids 
650 0 4 |a Maximum power density 
650 0 4 |a Multiwalled carbon nanotubes (MWCN) 
650 0 4 |a Poly(vinylidene fluoride-co-hexafluoropropylene) 
650 0 4 |a Polyvinylidene fluorides 
650 0 4 |a Solid electrolytes 
650 0 4 |a Solid-state electrolyte 
650 0 4 |a Specific capacitance 
650 0 4 |a Supercapacitor 
650 0 4 |a Yarn 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1039/c8ra04674c 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052759207&doi=10.1039%2fc8ra04674c&partnerID=40&md5=aad266eecad562fe5434e7350a29bc49 
520 3 |a All-solid-state supercapacitors (ASSS) with solid-state electrolytes (SSEs) can be used to overcome the liquid leakage problem in devices. However, ionic conduction in solid electrolytes is one of the barriers to further improvements in ASSS. This paper describes the fabrication of a flexible SSE composed of poly(vinylidene fluoride-co-hexafluoropropylene), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and ethylene carbonate, which demonstrates an ultrahigh conductivity of 8.52 mS cm-1 and a wide 5 V operation voltage window of -2 to +3 V. Electrodes composed of active carbon, multiwall carbon nanotubes, and polyvinylidene fluoride were used as both anode and cathode to assemble a symmetrical supercapacitor. The resultant supercapacitor exhibits a maximum power density of 3747 W kg-1 at an energy density of 7.71 W h kg-1 and a maximum energy density 17.1 W h kg-1 at a power density of 630 W kg-1. It displays excellent cycling stability with 91.3% of the initial specific capacitance after 3000 charging/discharging cycles. This flexible SSE in this study demonstrates a high potential for use in energy storage, conversion, and wearable device applications. © 2018 The Royal Society of Chemistry. 
700 1 0 |a Kumar, A.  |e author 
700 1 0 |a Lin, H.-Y.  |e author 
700 1 0 |a Pattanayak, B.  |e author 
700 1 0 |a Tsai, H.-Y.  |e author 
700 1 0 |a Tseng, T.-Y.  |e author 
700 1 0 |a Winie, T.  |e author 
700 1 0 |a Yang, C.-C.  |e author 
773 |t RSC Advances