Universal ion-transport descriptors and classes of inorganic solid-state electrolytes

Solid-state electrolytes (SSEs) with high ion conductivity are pivotal for the development and large-scale adoption of green-energy conversion and storage technologies such as fuel cells, electrocatalysts and solid-state batteries. Yet, SSEs are extremely complex materials for which general rational...

Full description

Bibliographic Details
Main Authors: Cazorla, C. (Author), Emperador, A. (Author), López, C. (Author), Rurali, R. (Author), Saucedo, E. (Author)
Format: Article
Language:English
Published: Royal Society of Chemistry 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02639nam a2200409Ia 4500
001 10.1039-d2mh01516a
008 230526s2023 CNT 000 0 und d
020 |a 20516347 (ISSN) 
245 1 0 |a Universal ion-transport descriptors and classes of inorganic solid-state electrolytes 
260 0 |b Royal Society of Chemistry  |c 2023 
300 |a 12 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1039/d2mh01516a 
520 3 |a Solid-state electrolytes (SSEs) with high ion conductivity are pivotal for the development and large-scale adoption of green-energy conversion and storage technologies such as fuel cells, electrocatalysts and solid-state batteries. Yet, SSEs are extremely complex materials for which general rational design principles remain indeterminate. Here, we combine first-principles materials modelling, computational power and modern data analysis techniques to advance towards the solution of such a fundamental and technologically pressing problem. Our data-driven survey reveals that the correlations between ion diffusivity and other materials descriptors in general are monotonic, although not necessarily linear, and largest when the latter are of vibrational nature and explicitly incorporate anharmonic effects. Surprisingly, principal component and k-means clustering analyses show that elastic and vibrational descriptors, rather than the usual ones related to chemical composition and ion mobility, are best suited for reducing the high complexity of SSEs and classifying them into universal classes. Our findings highlight the need for considering databases that incorporate temperature effects to improve our understanding of SSEs and point towards a generalized approach to the design of energy materials. © 2023 The Royal Society of Chemistry. 
650 0 4 |a Descriptors 
650 0 4 |a Digital storage 
650 0 4 |a Electrocatalysts 
650 0 4 |a Energy conversion and storages 
650 0 4 |a Energy conversion technologies 
650 0 4 |a Energy storage technologies 
650 0 4 |a Fuel cells 
650 0 4 |a Green energy 
650 0 4 |a Inorganic solids 
650 0 4 |a Ion conductivities 
650 0 4 |a Ions 
650 0 4 |a Ion-transport 
650 0 4 |a Large-scales 
650 0 4 |a Principal component analysis 
650 0 4 |a Solid electrolytes 
650 0 4 |a Solid state devices 
650 0 4 |a Solid-State Batteries 
650 0 4 |a Solid-state electrolyte 
700 1 0 |a Cazorla, C.  |e author 
700 1 0 |a Emperador, A.  |e author 
700 1 0 |a López, C.  |e author 
700 1 0 |a Rurali, R.  |e author 
700 1 0 |a Saucedo, E.  |e author 
773 |t Materials Horizons  |x 20516347 (ISSN)  |g 10 5, 1757-1768