Replacing amine by azide: dopamine azide polymerization triggered by sodium periodate

Polydopamine (PDA) has been widely described for a range of biomedical and surface engineering applications. However the structure of PDA remains elusive owing to the insoluble nature of the polymer. Furthermore, the influence of the amine group present in the polydopamine and related functional pol...

Full description

Bibliographic Details
Main Authors: Coy, E. (Author), Filip, C. (Author), Grajewski, J. (Author), Kempiński, M. (Author), Kim, Y. (Author), Mrówczyński, R. (Author), Popenda, Ł. (Author), Szukowska, M. (Author)
Format: Article
Language:English
Published: Royal Society of Chemistry 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03084nam a2200493Ia 4500
001 10.1039-d2py00293k
008 220706s2022 CNT 000 0 und d
020 |a 17599954 (ISSN) 
245 1 0 |a Replacing amine by azide: dopamine azide polymerization triggered by sodium periodate 
260 0 |b Royal Society of Chemistry  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1039/d2py00293k 
520 3 |a Polydopamine (PDA) has been widely described for a range of biomedical and surface engineering applications. However the structure of PDA remains elusive owing to the insoluble nature of the polymer. Furthermore, the influence of the amine group present in the polydopamine and related functional polycatchols on the character and the structure of resulting functional materials remains vague. Here we perform polymerization of the dopamine analogue 4-(2-azidoethyl)benzene-1,2-diol (dopamine azide), where the amine group is switched to azide, using sodium periodate, which gives rise to particles with a diameter of up to one micrometer. The obtained particles are stable in water but, in contrast to other polycatcechol-based polymers, are soluble in organic solvents. The detailed structural investigations using various liquid and solid-state nuclear magnetic resonance (NMR) spectroscopy methods, X-ray photoelectron spectroscopy (XPS) and mass spectrometry (ESI/MALD) prove that the obtained polymeric material consists mainly of repeating monomers linked by C-C bonds of aromatic units bearing open-azidoethyl chains. Moreover, the resulting polymer shows a different morphology from polydopamine (PDA) obtained under the same polymerization conditions. Therefore, our results are an important step towards understanding the relationships between the structures of the starting catechol monomers and shed new light on the influence of the amine group on the nature of the resulting poly(catechols). © 2022 The Royal Society of Chemistry 
650 0 4 |a Amine groups 
650 0 4 |a Amines 
650 0 4 |a Aromatic units 
650 0 4 |a C-C bonds 
650 0 4 |a Dopamine 
650 0 4 |a Engineering applications 
650 0 4 |a Functional materials 
650 0 4 |a Mass spectrometry 
650 0 4 |a Monomers 
650 0 4 |a Morphology 
650 0 4 |a Neurophysiology 
650 0 4 |a Nuclear magnetic resonance 
650 0 4 |a Nuclear magnetic resonance spectroscopy 
650 0 4 |a Phenols 
650 0 4 |a Polydopamine 
650 0 4 |a Polymerization 
650 0 4 |a Polymerization conditions 
650 0 4 |a Sodium compounds 
650 0 4 |a Solid-state nuclear magnetic resonance spectroscopy 
650 0 4 |a Spectroscopic analysis 
650 0 4 |a Structural investigation 
650 0 4 |a Surface engineering 
650 0 4 |a X ray photoelectron spectroscopy 
700 1 |a Coy, E.  |e author 
700 1 |a Filip, C.  |e author 
700 1 |a Grajewski, J.  |e author 
700 1 |a Kempiński, M.  |e author 
700 1 |a Kim, Y.  |e author 
700 1 |a Mrówczyński, R.  |e author 
700 1 |a Popenda, Ł.  |e author 
700 1 |a Szukowska, M.  |e author 
773 |t Polymer Chemistry