Effects of temperatures to the electrical properties of Li1.6Al0.6Sn1.4P3O12 NASICON type solid electrolytes

Li1.6Al0.6Sn1.4P3O12 solid electrolyte materials are prepared by mechanochemical milling method followed by heat treatment at five temperatures that are 550°C, 650°C, 750°C, 850°C and 950°C for 8 h. X-ray diffraction is used to determine the crystallographic phases while scanning electron microscope...

Full description

Bibliographic Details
Main Authors: Badar N. (Author), Kamarulzaman N. (Author), Mastuli M.S (Author), Mohamed, N.S (Author), Rusdi R. (Author), Rusdi, H. (Author), Subban, R.H.Y (Author)
Format: Article
Language:English
Published: American Institute of Physics Inc. 2017
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02041nas a2200241Ia 4500
001 10.1063-1.4999879
008 220120c20179999CNT?? ? 0 0und d
020 |a 0094243X (ISSN); 9780735415577 (ISBN) 
245 1 0 |a Effects of temperatures to the electrical properties of Li1.6Al0.6Sn1.4P3O12 NASICON type solid electrolytes 
260 0 |b American Institute of Physics Inc.  |c 2017 
520 3 |a Li1.6Al0.6Sn1.4P3O12 solid electrolyte materials are prepared by mechanochemical milling method followed by heat treatment at five temperatures that are 550°C, 650°C, 750°C, 850°C and 950°C for 8 h. X-ray diffraction is used to determine the crystallographic phases while scanning electron microscope and energy dispersive X-ray are used to study morphological properties and elemental compositions respectively. The conductivities of the pellets are determined using AC impedance spectroscopy. Substitution of Aluminium in LiSn2P3O12 system results in enhancement of room temperature ionic conductivity up to one orders of magnitude compared to the unsubstituted LiSn2P3O12 system. Furthermore, the sample with x = 0.4 shows higher ionic conductivity. This sample exhibits bulk conductivity of 10-6 S cm-1. This is attributed to increase in the number of conducting pathways due to an increase in crystallite homogeneity. This sample is also structurally stable toward temperature and thus suitable for thermal electrochemical device application. © 2017 Author(s). 
650 0 4 |a Li1.6Al0.6Sn1.4P3O12 
650 0 4 |a Mechanical milling 
650 0 4 |a Solid Electrolyte 
700 1 0 |a Badar N.  |e author 
700 1 0 |a Kamarulzaman N.  |e author 
700 1 0 |a Mastuli M.S.  |e author 
700 1 0 |a Mohamed, N.S.  |e author 
700 1 0 |a Rusdi R.  |e author 
700 1 0 |a Rusdi, H.  |e author 
700 1 0 |a Subban, R.H.Y.  |e author 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1063/1.4999879 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029857302&doi=10.1063%2f1.4999879&partnerID=40&md5=ef3b4e44d1263b6a0730528520e6ffa2