Gate control of interlayer exchange coupling in ferromagnetic semiconductor trilayers with perpendicular magnetic anisotropy

Interlayer exchange coupling (IEC) has been intensively investigated in magnetic multilayers, owing to its potential for magnetic memory and logic device applications. Although IEC can be reliably obtained in metallic ferromagnetic multilayer systems by adjusting structural parameters, it is difficu...

Full description

Bibliographic Details
Main Authors: Chongthanaphisut, P. (Author), Dobrowolska, M. (Author), Furdyna, J.K (Author), Lee, K.J (Author), Lee, S. (Author), Liu, X. (Author)
Format: Article
Language:English
Published: American Institute of Physics Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02463nam a2200445Ia 4500
001 10.1063-5.0079245
008 220510s2022 CNT 000 0 und d
020 |a 2166532X (ISSN) 
245 1 0 |a Gate control of interlayer exchange coupling in ferromagnetic semiconductor trilayers with perpendicular magnetic anisotropy 
260 0 |b American Institute of Physics Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1063/5.0079245 
520 3 |a Interlayer exchange coupling (IEC) has been intensively investigated in magnetic multilayers, owing to its potential for magnetic memory and logic device applications. Although IEC can be reliably obtained in metallic ferromagnetic multilayer systems by adjusting structural parameters, it is difficult to achieve gate control of IEC in metallic systems due to their large carrier densities. Here, we demonstrate that IEC can be reliably controlled in ferromagnetic semiconductor (FMS) trilayer structures by means of an external gate voltage. We show that, by designing a quantum-well-type trilayer structure based on (Ga,Mn)(As,P) FMSs and adapting the ionic liquid gating technique, the carrier density in the nonmagnetic spacer of the system can be modulated with gate voltages of only a few volts. Due to this capability, we are able to vary the strength of IEC by as much as 49% in the FMS trilayer. These results provide important insights into design of spintronic devices and their energy-efficient operation. © 2022 Author(s). 
650 0 4 |a Carrier concentration 
650 0 4 |a Device application 
650 0 4 |a Energy efficiency 
650 0 4 |a Ferromagnetic materials 
650 0 4 |a Ferromagnetic semiconductor 
650 0 4 |a Ferromagnetism 
650 0 4 |a Gate control 
650 0 4 |a Gate voltages 
650 0 4 |a Interlayer exchange coupling 
650 0 4 |a Ionic liquids 
650 0 4 |a Logic devices 
650 0 4 |a Magnetic anisotropy 
650 0 4 |a Magnetic logic 
650 0 4 |a Magnetic semiconductors 
650 0 4 |a Magnetic storage 
650 0 4 |a Metallics 
650 0 4 |a Perpendicular magnetic anisotropy 
650 0 4 |a Semiconductor quantum wells 
650 0 4 |a Threshold voltage 
650 0 4 |a Trilayer structure 
650 0 4 |a Trilayers 
700 1 |a Chongthanaphisut, P.  |e author 
700 1 |a Dobrowolska, M.  |e author 
700 1 |a Furdyna, J.K.  |e author 
700 1 |a Lee, K.J.  |e author 
700 1 |a Lee, S.  |e author 
700 1 |a Liu, X.  |e author 
773 |t APL Materials