N-doped Fe nanoparticles confined in carbon matrix for high-performance oxygen evolution reaction

Fe-based nanoparticles are promising oxygen evolution reaction (OER) electrocatalysts. However, they often suffer from serious agglomeration during the electrocatalytic process, which leads to significant attenuation of catalytic performance. Herein, highly dispersed Fe nanoparticles with small size...

Full description

Bibliographic Details
Main Authors: Chen, M. (Author), Hou, Y. (Author), Jiang, Z. (Author), Luo, X. (Author), Shi, P. (Author), Yang, Y. (Author), Yu, T. (Author), Yuan, C. (Author), Zhou, H. (Author), Zhou, W. (Author)
Format: Article
Language:English
Published: American Institute of Physics Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02829nam a2200493Ia 4500
001 10.1063-5.0080225
008 220425s2022 CNT 000 0 und d
020 |a 00036951 (ISSN) 
245 1 0 |a N-doped Fe nanoparticles confined in carbon matrix for high-performance oxygen evolution reaction 
260 0 |b American Institute of Physics Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1063/5.0080225 
520 3 |a Fe-based nanoparticles are promising oxygen evolution reaction (OER) electrocatalysts. However, they often suffer from serious agglomeration during the electrocatalytic process, which leads to significant attenuation of catalytic performance. Herein, highly dispersed Fe nanoparticles with small sizes of ∼7 nm are confined in amorphous carbon matrix by pulsed laser deposition technology. Based on this, a simple N2 radio frequency plasma strategy is proposed to introduce N doping in the Fe nanoparticles. Electrochemical measurements suggest that N-doped Fe nanoparticles exhibit enhanced OER activity and stability, which offers a low overpotential of 246 mV at 10 mA cm-2 and the Tafel slope of 50 mV dec-1 in 1 M KOH solution. Based on experimental measurements combined with first-principles calculations, the outstanding OER performance of N-doped Fe nanoparticles can be attributed to the synergistic effect of the unique confined structure and N doping, which not only enhances the electrochemical surface area and improves electrical conductivity but also weakens the adsorption of intermediates and reduces the energy barrier of OER reaction. This work provides a facile method for the construction of metal nanoparticles with confined nanostructure and controlled N doping, which will greatly promote the development of OER electrocatalysts. © 2022 Author(s). 
650 0 4 |a Amorphous carbon 
650 0 4 |a Amorphous carbon matrix 
650 0 4 |a Calculations 
650 0 4 |a Carbon matrix 
650 0 4 |a Catalytic performance 
650 0 4 |a Doping (additives) 
650 0 4 |a Electrocatalysts 
650 0 4 |a Electrocatalytic process 
650 0 4 |a Fe nanoparticles 
650 0 4 |a Fe-based 
650 0 4 |a Iron 
650 0 4 |a Metal nanoparticles 
650 0 4 |a N-doped 
650 0 4 |a N-Doping 
650 0 4 |a Oxygen 
650 0 4 |a Performance 
650 0 4 |a Potassium hydroxide 
650 0 4 |a Pulsed laser deposition 
650 0 4 |a Pulsed-laser deposition 
650 0 4 |a Reaction intermediates 
650 0 4 |a Slope stability 
700 1 |a Chen, M.  |e author 
700 1 |a Hou, Y.  |e author 
700 1 |a Jiang, Z.  |e author 
700 1 |a Luo, X.  |e author 
700 1 |a Shi, P.  |e author 
700 1 |a Yang, Y.  |e author 
700 1 |a Yu, T.  |e author 
700 1 |a Yuan, C.  |e author 
700 1 |a Zhou, H.  |e author 
700 1 |a Zhou, W.  |e author 
773 |t Applied Physics Letters