The effect of dielectric environment on the brightening of neutral and charged dark excitons in WSe2monolayer

The dielectric environment of atomically thin monolayer (ML) of semiconducting transition metal dichalcogenides affects both the electronic bandgap and the excitonic binding energy in the ML. We investigate the effect of the environment on the in-plane magnetic field brightening of neutral and charg...

Full description

Bibliographic Details
Main Authors: Babiński, A. (Author), Grzeszczyk, M. (Author), Kazimierczuk, T. (Author), Kipczak, L. (Author), Kossacki, P. (Author), Molas, M.R (Author), Taniguchi, T. (Author), Watanabe, K. (Author), Zinkiewicz, M. (Author)
Format: Article
Language:English
Published: American Institute of Physics Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02317nam a2200421Ia 4500
001 10.1063-5.0085950
008 220510s2022 CNT 000 0 und d
020 |a 00036951 (ISSN) 
245 1 0 |a The effect of dielectric environment on the brightening of neutral and charged dark excitons in WSe2monolayer 
260 0 |b American Institute of Physics Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1063/5.0085950 
520 3 |a The dielectric environment of atomically thin monolayer (ML) of semiconducting transition metal dichalcogenides affects both the electronic bandgap and the excitonic binding energy in the ML. We investigate the effect of the environment on the in-plane magnetic field brightening of neutral and charged dark exciton emissions in the WSe2 ML. The monolayers placed in three dielectric environments are studied, in particular, the ML encapsulated in hexagonal BN (hBN) flakes, the ML deposited on a hBN layer, and the ML embedded between the hBN flake and SiO2/Si substrate. We observe that the brightening rates of the neutral and charged dark excitons depend on the dielectric environment, which may be related to the variation of the level of carrier concentration in the ML. Moreover, the surrounding media, characterized by different dielectric constants, weakly influence the relative energies of the neutral and charged dark excitons in reference to the bright ones. © 2022 Author(s). 
650 0 4 |a Binding energy 
650 0 4 |a Carrier concentration 
650 0 4 |a Dark excitons 
650 0 4 |a Dichalcogenides 
650 0 4 |a Electronic band gaps 
650 0 4 |a Exciton emission 
650 0 4 |a Excitonic binding 
650 0 4 |a Excitons 
650 0 4 |a In-plane magnetic fields 
650 0 4 |a Monolayers 
650 0 4 |a Relative energies 
650 0 4 |a Selenium compounds 
650 0 4 |a Semiconducting transition 
650 0 4 |a Si substrates 
650 0 4 |a Silica 
650 0 4 |a Transition metals 
700 1 |a Babiński, A.  |e author 
700 1 |a Grzeszczyk, M.  |e author 
700 1 |a Kazimierczuk, T.  |e author 
700 1 |a Kipczak, L.  |e author 
700 1 |a Kossacki, P.  |e author 
700 1 |a Molas, M.R.  |e author 
700 1 |a Taniguchi, T.  |e author 
700 1 |a Watanabe, K.  |e author 
700 1 |a Zinkiewicz, M.  |e author 
773 |t Applied Physics Letters