Diffusiophoresis of a highly charged dielectric fluid droplet induced by diffusion potential

Diffusiophoresis of a dielectric fluid droplet in electrolyte solutions is investigated theoretically, focusing on the electrophoresis component resulting from the induced diffusion potential in the electrolyte solution when the diffusivities of cations and anions there are different. The resultant...

Full description

Bibliographic Details
Main Authors: Fan, L. (Author), Jian, E. (Author), Lee, E. (Author), Lin, J. (Author), Tseng, A. (Author), Tseng, J. (Author), Wan, R. (Author), Wu, Y. (Author)
Format: Article
Language:English
Published: American Institute of Physics Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02906nam a2200457Ia 4500
001 10.1063-5.0086282
008 220425s2022 CNT 000 0 und d
020 |a 10706631 (ISSN) 
245 1 0 |a Diffusiophoresis of a highly charged dielectric fluid droplet induced by diffusion potential 
260 0 |b American Institute of Physics Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1063/5.0086282 
520 3 |a Diffusiophoresis of a dielectric fluid droplet in electrolyte solutions is investigated theoretically, focusing on the electrophoresis component resulting from the induced diffusion potential in the electrolyte solution when the diffusivities of cations and anions there are different. The resultant electrokinetic equations are solved with a pseudo-spectral method based on the Chebyshev polynomials. We found, among other things, that the electrophoresis component dominates at a larger Debye length, whereas the chemiphoresis component at a smaller Debye length for a dielectric droplet of a constant surface charge density. The two components are of comparable magnitudes in the NaCl solution. The dual between the spinning electric driving force tangent to the droplet surface and the hydrodynamic drag force reinforced by the motion-deterring electrokinetic Maxwell traction from the surrounding exterior osmosis flow is crucial in the determination of the ultimate droplet motion. Unlike the chemiphoresis component, which is independent of the sign of charges carried by the droplet, the droplet moving direction as well as its magnitude in the electrophoresis component depends on the sign of charges carried by the droplet as well as the direction of the electric field induced by the diffusion potential. This gives the electrophoresis component excellent maneuverability in practical applications like drug delivery and enhanced oil recovery, where migration of droplets toward regions of higher solute concentrations is often desired. © 2022 Author(s). 
650 0 4 |a Chebyshev polynomials 
650 0 4 |a Debye length 
650 0 4 |a Dielectric droplet 
650 0 4 |a Dielectric fluid 
650 0 4 |a Diffusion potential 
650 0 4 |a Diffusiophoresis 
650 0 4 |a Drag 
650 0 4 |a Drops 
650 0 4 |a Drug delivery 
650 0 4 |a Electric fields 
650 0 4 |a Electric traction 
650 0 4 |a Electrokinetic equations 
650 0 4 |a Electrolyte solutions 
650 0 4 |a Electrolytes 
650 0 4 |a Electroosmosis 
650 0 4 |a Electrophoresis 
650 0 4 |a Fluid droplets 
650 0 4 |a Polynomials 
650 0 4 |a Pseudospectral methods 
650 0 4 |a Sodium chloride 
700 1 |a Fan, L.  |e author 
700 1 |a Jian, E.  |e author 
700 1 |a Lee, E.  |e author 
700 1 |a Lin, J.  |e author 
700 1 |a Tseng, A.  |e author 
700 1 |a Tseng, J.  |e author 
700 1 |a Wan, R.  |e author 
700 1 |a Wu, Y.  |e author 
773 |t Physics of Fluids