Ultra-wide-temperature-range superelasticity and intrinsic two-way shape memory effect in Co-Ni-Ga microwires

We demonstrate perfect superelasticity and inherent two-way shape memory effect in Co49Ni21Ga30 microwires fabricated by a Taylor-Ulitovsky method. With the formation of an almost complete [001]A-oriented single crystal along the axis of the wire, the as-drawn microwire displays great superelastic b...

Full description

Bibliographic Details
Main Authors: Chen, H. (Author), Cong, D. (Author), Lang, R. (Author), Li, R. (Author), Li, S. (Author), Meng, L. (Author), Niu, Y. (Author), Song, C. (Author), Wang, Y.-D (Author), Yin, T. (Author), Zhang, X. (Author)
Format: Article
Language:English
Published: American Institute of Physics Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02328nam a2200457Ia 4500
001 10.1063-5.0089321
008 220510s2022 CNT 000 0 und d
020 |a 00036951 (ISSN) 
245 1 0 |a Ultra-wide-temperature-range superelasticity and intrinsic two-way shape memory effect in Co-Ni-Ga microwires 
260 0 |b American Institute of Physics Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1063/5.0089321 
520 3 |a We demonstrate perfect superelasticity and inherent two-way shape memory effect in Co49Ni21Ga30 microwires fabricated by a Taylor-Ulitovsky method. With the formation of an almost complete [001]A-oriented single crystal along the axis of the wire, the as-drawn microwire displays great superelastic behaviors with a large reversible tensile strain of >8% over an ultra-wide temperature window of 550 K (223-773 K). Simultaneously, an excellent intrinsic two-way shape memory effect with a considerably large strain output (∼6.3%) was also obtained in this Co49Ni21Ga30 microwire. After mechanical training, the two-way shape memory strain can reach up to 6.8% at a low operating temperature. With the combination of above extraordinary functional properties and the low cost of fabrication, the Co49Ni21Ga30 microwire holds a significant potential for applications in miniature sensing and self-actuating devices in the future. © 2022 Author(s). 
650 0 4 |a Cobalt alloys 
650 0 4 |a Elasticity 
650 0 4 |a Gallium alloys 
650 0 4 |a Large strains 
650 0 4 |a Mechanical training 
650 0 4 |a Microwire 
650 0 4 |a Shape memory effect 
650 0 4 |a Single crystals 
650 0 4 |a Super elastic behavior 
650 0 4 |a Superelasticity 
650 0 4 |a Temperature window 
650 0 4 |a Tensile strain 
650 0 4 |a Ternary alloys 
650 0 4 |a Two-way shape memory effect 
650 0 4 |a Ulitovsky method 
650 0 4 |a Ultra-wide 
650 0 4 |a Wide temperature ranges 
700 1 |a Chen, H.  |e author 
700 1 |a Cong, D.  |e author 
700 1 |a Lang, R.  |e author 
700 1 |a Li, R.  |e author 
700 1 |a Li, S.  |e author 
700 1 |a Meng, L.  |e author 
700 1 |a Niu, Y.  |e author 
700 1 |a Song, C.  |e author 
700 1 |a Wang, Y.-D.  |e author 
700 1 |a Yin, T.  |e author 
700 1 |a Zhang, X.  |e author 
773 |t Applied Physics Letters