Topologically assisted optimization for rotor design

We develop and apply a novel shape optimization exemplified for a two-blade rotor with respect to the figure of merit. This topologically assisted optimization contains two steps. First, a global evolutionary optimization is performed for the shape parameters, and then a topological analysis reveals...

Full description

Bibliographic Details
Main Authors: Chen, X. (Author), Cornejo Maceda, G.Y (Author), Iollo, A. (Author), Li, P. (Author), Noack, B.R (Author), Wang, T. (Author), Yang, Y. (Author)
Format: Article
Language:English
Published: American Institute of Physics Inc. 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02774nam a2200385Ia 4500
001 10.1063-5.0145941
008 230526s2023 CNT 000 0 und d
020 |a 10706631 (ISSN) 
245 1 0 |a Topologically assisted optimization for rotor design 
260 0 |b American Institute of Physics Inc.  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1063/5.0145941 
520 3 |a We develop and apply a novel shape optimization exemplified for a two-blade rotor with respect to the figure of merit. This topologically assisted optimization contains two steps. First, a global evolutionary optimization is performed for the shape parameters, and then a topological analysis reveals the local and global extrema of the objective function directly from the data. This non-dimensional objective function compares the achieved thrust with the required torque. Rotor blades have a decisive contribution to the performance of quadcopters. A two-blade rotor with pre-defined chord length distribution is chosen as the baseline model. The simulation is performed in a moving reference frame with a k - ω turbulence model for the hovering condition. The rotor shape is parameterized by the twist angle distribution. The optimization of this distribution employs a genetic algorithm. The local maxima are distilled from the data using a novel topological analysis inspired by discrete scalar-field topology. We identify one global maximum to be located in the interior of the data and five further local maxima related to errors from non-converged simulations. The interior location of the global optimum suggests that small improvements can be gained from further optimization. The local maxima have a small persistence, i.e., disappear under a small ϵ perturbation of the figure of merit values. In other words, the data may be approximated by a smooth mono-modal surrogate model. Thus, the topological data analysis provides valuable insight for optimization and surrogate modeling. © 2023 Author(s). 
650 0 4 |a Blade rotors 
650 0 4 |a Evolutionary optimizations 
650 0 4 |a Genetic algorithms 
650 0 4 |a Global optimization 
650 0 4 |a Local maximum 
650 0 4 |a Objective functions 
650 0 4 |a Optimisations 
650 0 4 |a Rotor design 
650 0 4 |a Shape optimization 
650 0 4 |a Shape-optimization 
650 0 4 |a Surrogate modeling 
650 0 4 |a Topological analysis 
650 0 4 |a Topology 
650 0 4 |a Turbulence models 
650 0 4 |a Two-blade 
700 1 0 |a Chen, X.  |e author 
700 1 0 |a Cornejo Maceda, G.Y.  |e author 
700 1 0 |a Iollo, A.  |e author 
700 1 0 |a Li, P.  |e author 
700 1 0 |a Noack, B.R.  |e author 
700 1 0 |a Wang, T.  |e author 
700 1 0 |a Yang, Y.  |e author 
773 |t Physics of Fluids  |x 10706631 (ISSN)  |g 35 5