Category guided attention network for brain tumor segmentation in MRI

Objective. Magnetic resonance imaging (MRI) has been widely used for the analysis and diagnosis of brain diseases. Accurate and automatic brain tumor segmentation is of paramount importance for radiation treatment. However, low tissue contrast in tumor regions makes it a challenging task. Approach....

Full description

Bibliographic Details
Main Authors: Chen, C. (Author), Ding, M. (Author), Li, J. (Author), Yu, H. (Author), Zha, S. (Author)
Format: Article
Language:English
Published: IOP Publishing Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02534nam a2200433Ia 4500
001 10.1088-1361-6560-ac628a
008 220510s2022 CNT 000 0 und d
020 |a 00319155 (ISSN) 
245 1 0 |a Category guided attention network for brain tumor segmentation in MRI 
260 0 |b IOP Publishing Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/1361-6560/ac628a 
520 3 |a Objective. Magnetic resonance imaging (MRI) has been widely used for the analysis and diagnosis of brain diseases. Accurate and automatic brain tumor segmentation is of paramount importance for radiation treatment. However, low tissue contrast in tumor regions makes it a challenging task. Approach. We propose a novel segmentation network named Category Guided Attention U-Net (CGA U-Net). In this model, we design a Supervised Attention Module (SAM) based on the attention mechanism, which can capture more accurate and stable long-range dependency in feature maps without introducing much computational cost. Moreover, we propose an intra-class update approach to reconstruct feature maps by aggregating pixels of the same category. Main results. Experimental results on the BraTS 2019 datasets show that the proposed method outperformers the state-of-the-art algorithms in both segmentation performance and computational complexity. Significance. The CGA U-Net can effectively capture the global semantic information in the MRI image by using the SAM module, while significantly reducing the computational cost. Code is available at https://github.com/delugewalker/CGA-U-Net. © 2022 Institute of Physics and Engineering in Medicine. 
650 0 4 |a attention mechanism 
650 0 4 |a Attention mechanisms 
650 0 4 |a Brain 
650 0 4 |a Brain disease 
650 0 4 |a brain tumor segmentation 
650 0 4 |a Brain tumor segmentation 
650 0 4 |a Computational costs 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Diagnosis 
650 0 4 |a Feature map 
650 0 4 |a Long-range dependencies 
650 0 4 |a magnetic resonance imaging 
650 0 4 |a Magnetic resonance imaging 
650 0 4 |a Module-based 
650 0 4 |a Radiation treatments 
650 0 4 |a semantic segmentation 
650 0 4 |a Semantic segmentation 
650 0 4 |a Semantic Segmentation 
650 0 4 |a Semantics 
650 0 4 |a Tumors 
700 1 |a Chen, C.  |e author 
700 1 |a Ding, M.  |e author 
700 1 |a Li, J.  |e author 
700 1 |a Yu, H.  |e author 
700 1 |a Zha, S.  |e author 
773 |t Physics in Medicine and Biology