Real spectra, Anderson localization, and topological phases in one-dimensional quasireciprocal systems

We introduce the one-dimensional quasireciprocal lattices where the forward hopping amplitudes between nearest neighboring sites {t + t jR } are chosen to be a random permutation of the backward hopping {t + t jL } or vice versa. The values of {t jL } (or {t jR }) can be periodic, quasiperiodic, or...

Full description

Bibliographic Details
Main Authors: Lu, R. (Author), Zeng, Q.-B (Author)
Format: Article
Language:English
Published: IOP Publishing Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02287nam a2200313Ia 4500
001 10.1088-1367-2630-ac61d0
008 220510s2022 CNT 000 0 und d
020 |a 13672630 (ISSN) 
245 1 0 |a Real spectra, Anderson localization, and topological phases in one-dimensional quasireciprocal systems 
260 0 |b IOP Publishing Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/1367-2630/ac61d0 
520 3 |a We introduce the one-dimensional quasireciprocal lattices where the forward hopping amplitudes between nearest neighboring sites {t + t jR } are chosen to be a random permutation of the backward hopping {t + t jL } or vice versa. The values of {t jL } (or {t jR }) can be periodic, quasiperiodic, or randomly distributed. We show that the Hamiltonian matrices are pseudo-Hermitian and the energy spectra are real as long as {t jL } (or {t jR }) are smaller than the threshold value. While the non-Hermitian skin effect is always absent in the eigenstates due to the global cancellation of local nonreciprocity, the competition between the nonreciprocity and the accompanying disorders in hopping amplitudes gives rise to energy-dependent localization transitions. Moreover, in the quasireciprocal Su-Schrieffer-Heeger models with staggered hopping t jL (or t jR ), topologically nontrivial phases are found in the real-spectra regimes characterized by nonzero winding numbers. Finally, we propose an experimental scheme to realize the quasireciprocal models in electrical circuits. Our findings shed new light on the subtle interplay among nonreciprocity, disorder, and topology. © 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. 
650 0 4 |a Anderson localization 
650 0 4 |a Hermitians 
650 0 4 |a Hopping amplitude 
650 0 4 |a Nonreciprocity 
650 0 4 |a One-dimensional 
650 0 4 |a Quasireciprocal lattice 
650 0 4 |a quasireciprocal lattices 
650 0 4 |a Random permutations 
650 0 4 |a real spectra 
650 0 4 |a Real spectrum 
650 0 4 |a Spectra's 
650 0 4 |a Topological phase 
650 0 4 |a topological phases 
650 0 4 |a Topology 
700 1 |a Lu, R.  |e author 
700 1 |a Zeng, Q.-B.  |e author 
773 |t New Journal of Physics