Analytic extensions of Starobinsky model of inflation

We study several extensions of the Starobinsky model of inflation, which obey all observational constraints on the inflationary parameters, by demanding that both the inflaton scalar potential in the Einstein frame and the F(R) gravity function in the Jordan frame have the explicit dependence upon f...

Full description

Bibliographic Details
Main Authors: Ivanov, V.R (Author), Ketov, S.V (Author), Pozdeeva, E.O (Author), Vernov, S.Y (Author)
Format: Article
Language:English
Published: IOP Publishing Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01979nam a2200193Ia 4500
001 10.1088-1475-7516-2022-03-058
008 220425s2022 CNT 000 0 und d
020 |a 14757516 (ISSN) 
245 1 0 |a Analytic extensions of Starobinsky model of inflation 
260 0 |b IOP Publishing Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/1475-7516/2022/03/058 
520 3 |a We study several extensions of the Starobinsky model of inflation, which obey all observational constraints on the inflationary parameters, by demanding that both the inflaton scalar potential in the Einstein frame and the F(R) gravity function in the Jordan frame have the explicit dependence upon fields and parameters in terms of elementary functions. Our models are continuously connected to the original Starobinsky model via changing the parameters. We modify the Starobinsky (R + R 2) model by adding an R 3-term, an R 4-term, and an R 3/2-term, respectively, and calculate the scalar potentials, the inflationary observables and the allowed limits on the deformation parameters by using the latest observational bounds. We find that the tensor-to-scalar ratio in the Starobinsky model modified by the R 3/2-term significantly increases with raising the parameter in front of that term. On the other side, we deform the scalar potential of the Starobinsky model in the Einstein frame in powers of y = exp(-(2/3)φ/M Pl), where φ is the canonical inflaton (scalaron) field, calculate the corresponding F(R) gravity functions in the two new cases, and find the restrictions on the deformation parameters in the lowest orders with respect to the variable y that is physically small during slow-roll inflation. © 2022 The Author(s). 
650 0 4 |a inflation 
650 0 4 |a modified gravity 
700 1 |a Ivanov, V.R.  |e author 
700 1 |a Ketov, S.V.  |e author 
700 1 |a Pozdeeva, E.O.  |e author 
700 1 |a Vernov, S.Y.  |e author 
773 |t Journal of Cosmology and Astroparticle Physics