|
|
|
|
LEADER |
01044nam a2200181Ia 4500 |
001 |
10.1090-tran-8603 |
008 |
220425s2022 CNT 000 0 und d |
020 |
|
|
|a 00029947 (ISSN)
|
245 |
1 |
0 |
|a DISTINCT DISTANCES ON HYPERBOLIC SURFACES
|
260 |
|
0 |
|b American Mathematical Society
|c 2022
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.1090/tran/8603
|
520 |
3 |
|
|a For any cofinite Fuchsian group Γ ⊂PSL(2,R), we show that any set of N points on the hyperbolic surface Γ\H2 determines ≥ CΓ N logN distinct distances for some constant CΓ > 0 depending only on Γ. In particular, for Γ being any finite index subgroup of PSL(2, Z) with μ = [PSL(2, Z) : Γ] < ∞, any set of N points on Γ\H2 determines ≥ C N μ logN distinct distances for some absolute constant C > 0. © 2022 American Mathematical Society.
|
650 |
0 |
4 |
|a equilateral dimension
|
650 |
0 |
4 |
|a Erdos distinct distances
|
650 |
0 |
4 |
|a Fuchsian group
|
650 |
0 |
4 |
|a hyperbolic surface
|
700 |
1 |
|
|a Meng, X.
|e author
|
773 |
|
|
|t Transactions of the American Mathematical Society
|