Emission-line diagnostics of H ii regions using conditional invertible neural networks

Young massive stars play an important role in the evolution of the interstellar medium (ISM) and the self-regulation of star formation in giant molecular clouds (GMCs) by injecting energy, momentum, and radiation (stellar feedback) into surrounding environments, disrupting the parental clouds, and r...

Full description

Bibliographic Details
Main Authors: Ardizzone, L. (Author), Glover, S.C.O (Author), Kang, D.E (Author), Klessen, R.S (Author), Koethe, U. (Author), Ksoll, V.F (Author), Pellegrini, E.W (Author)
Format: Article
Language:English
Published: Oxford University Press 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03154nam a2200433Ia 4500
001 10.1093-mnras-stac222
008 220425s2022 CNT 000 0 und d
020 |a 00358711 (ISSN) 
245 1 0 |a Emission-line diagnostics of H ii regions using conditional invertible neural networks 
260 0 |b Oxford University Press  |c 2022 
300 |a 31 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1093/mnras/stac222 
520 3 |a Young massive stars play an important role in the evolution of the interstellar medium (ISM) and the self-regulation of star formation in giant molecular clouds (GMCs) by injecting energy, momentum, and radiation (stellar feedback) into surrounding environments, disrupting the parental clouds, and regulating further star formation. Information of the stellar feedback inheres in the emission we observe, however inferring the physical properties from photometric and spectroscopic measurements is difficult, because stellar feedback is a highly complex and non-linear process, so that the observational data are highly degenerate. On this account, we introduce a novel method that couples a conditional invertible neural network (cINN) with the WARPFIELD-emission predictor (WARPFIELD-EMP) to estimate the physical properties of star-forming regions from spectral observations. We present a cINN that predicts the posterior distribution of seven physical parameters (cloud mass, star formation efficiency, cloud density, cloud age which means age of the first generation stars, age of the youngest cluster, the number of clusters, and the evolutionary phase of the cloud) from the luminosity of 12 optical emission lines, and test our network with synthetic models that are not used during training. Our network is a powerful and time-efficient tool that can accurately predict each parameter, although degeneracy sometimes remains in the posterior estimates of the number of clusters. We validate the posteriors estimated by the network and confirm that they are consistent with the input observations. We also evaluate the influence of observational uncertainties on the network performance. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. 
650 0 4 |a Electromagnetic wave emission 
650 0 4 |a galaxies: star formation 
650 0 4 |a Galaxies: star formation 
650 0 4 |a H ii region 
650 0 4 |a H ii regions 
650 0 4 |a Interstellar medias 
650 0 4 |a Interstellar medium: cloud 
650 0 4 |a ISM: clouds 
650 0 4 |a Media clouds 
650 0 4 |a Methods. Data analysis 
650 0 4 |a methods: data analysis 
650 0 4 |a methods: statistical 
650 0 4 |a Methods:statistical 
650 0 4 |a Neural-networks 
650 0 4 |a Physical properties 
650 0 4 |a Stars 
650 0 4 |a Stars formation 
650 0 4 |a Stellars 
700 1 |a Ardizzone, L.  |e author 
700 1 |a Glover, S.C.O.  |e author 
700 1 |a Kang, D.E.  |e author 
700 1 |a Klessen, R.S.  |e author 
700 1 |a Koethe, U.  |e author 
700 1 |a Ksoll, V.F.  |e author 
700 1 |a Pellegrini, E.W.  |e author 
773 |t Monthly Notices of the Royal Astronomical Society