RAMSES-RTZ: non-equilibrium metal chemistry and cooling coupled to on-the-fly radiation hydrodynamics

Emission and absorption lines from elements heavier than helium (metals) represent one of our strongest probes of galaxy formation physics across nearly all redshifts accessible to observations. The vast majority of simulations that model these metal lines often assume either collisional or photoion...

Full description

Bibliographic Details
Main Author: Katz, H. (Author)
Format: Article
Language:English
Published: Oxford University Press 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03172nam a2200445Ia 4500
001 10.1093-mnras-stac423
008 220425s2022 CNT 000 0 und d
020 |a 00358711 (ISSN) 
245 1 0 |a RAMSES-RTZ: non-equilibrium metal chemistry and cooling coupled to on-the-fly radiation hydrodynamics 
260 0 |b Oxford University Press  |c 2022 
300 |a 18 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1093/mnras/stac423 
520 3 |a Emission and absorption lines from elements heavier than helium (metals) represent one of our strongest probes of galaxy formation physics across nearly all redshifts accessible to observations. The vast majority of simulations that model these metal lines often assume either collisional or photoionization equilibrium, or a combination of the two. For the few simulations that have relaxed these assumptions, a redshift-dependent meta-galactic UV background or fixed spectrum is often used in the non-equilibrium photoionization calculation, which is unlikely to be accurate in the interstellar medium where the gas can self-shield, as well as in the high-redshift circumgalactic medium, where locally emitted radiation may dominate over the UV background. In this work, we relax this final assumption by coupling the ionization states of individual metals to the radiation hydrodynamics solver present in ramses-rt. Our chemical network follows radiative recombination, dielectronic recombination, collisional ionization, photoionization, and charge transfer, and we use the ionization states to compute non-equilibrium optically thin metal-line cooling. The fiducial model solves for the ionization states of C, N, O, Mg, Si, S, Fe, and Ne in addition to H, He, and H2, but can be easily extended for other ions. We provide interfaces to two different ODE solvers that are competitive in both speed and accuracy. The code has been benchmarked across a variety of gas conditions to reproduce results from cloudy when equilibrium is reached. We show an example isolated galaxy simulation with on-the-fly radiative transfer that demonstrates the utility of our code for translating between simulations and observations without the use of idealized photoionization models. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. 
650 0 4 |a Charge transfer 
650 0 4 |a Cosmology 
650 0 4 |a Galaxies 
650 0 4 |a H ii region 
650 0 4 |a H ii regions 
650 0 4 |a hydrodynamics 
650 0 4 |a Hydrodynamics 
650 0 4 |a Ionization of gases 
650 0 4 |a Ionization state 
650 0 4 |a ISM: abundance 
650 0 4 |a ISM: abundances 
650 0 4 |a Metal cooling 
650 0 4 |a Metal line 
650 0 4 |a Metals 
650 0 4 |a Metals chemistry 
650 0 4 |a Method: numerical 
650 0 4 |a methods: numerical 
650 0 4 |a Non equilibrium 
650 0 4 |a Numerical methods 
650 0 4 |a Photoionization 
650 0 4 |a Radiation hydrodynamics 
650 0 4 |a radiative transfer 
650 0 4 |a Radiative transfer 
650 0 4 |a Red shift 
650 0 4 |a Red Shift 
700 1 |a Katz, H.  |e author 
773 |t Monthly Notices of the Royal Astronomical Society