The column densities of molecular gas across cosmic time: bridging observations and simulations

Observations of the cosmic evolution of different gas phases across time indicate a marked increase in the molecular gas mass density towards z ∼2-3. Such a transformation implies an accompanied change in the global distribution of molecular hydrogen column densities (NH2). Using observations by PHA...

Full description

Bibliographic Details
Main Authors: Fresco, A.Y (Author), Lahén, N. (Author), Nelson, D. (Author), Péroux, C. (Author), Schinnerer, E. (Author), Szakacs, R. (Author), Weng, S. (Author), Zwaan, M.A (Author)
Format: Article
Language:English
Published: Oxford University Press 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03212nam a2200469Ia 4500
001 10.1093-mnras-stac510
008 220510s2022 CNT 000 0 und d
020 |a 00358711 (ISSN) 
245 1 0 |a The column densities of molecular gas across cosmic time: bridging observations and simulations 
260 0 |b Oxford University Press  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1093/mnras/stac510 
520 3 |a Observations of the cosmic evolution of different gas phases across time indicate a marked increase in the molecular gas mass density towards z ∼2-3. Such a transformation implies an accompanied change in the global distribution of molecular hydrogen column densities (NH2). Using observations by PHANGS-ALMA/SDSS and simulations by GRIFFIN/IllustrisTNG we explore the evolution of this H2 column density distribution function [f(NH2)]. The H2 (and H i) column density maps for TNG50 and TNG100 are derived in post-processing and are made available through the IllustrisTNG online API. The shape and normalization of f(NH2) of individual main-sequence star-forming galaxies are correlated with the star formation rate (SFR), stellar mass (M∗), and H2 mass (MH2) in both observations and simulations. TNG100, combined with H2 post-processing models, broadly reproduces observations, albeit with differences in slope and normalization. Also, an analytically modelled f(N), based on exponential gas discs, matches well with the simulations. The GRIFFIN simulation gives first indications that the slope of f(NH2) might not majorly differ when including non-equilibrium chemistry in simulations. The f(NH2) by TNG100 implies that higher molecular gas column densities are reached at z = 3 than at z = 0. Further, denser regions contribute more to the molecular mass density at z = 3. Finally, H2 starts dominating compared to H i only at column densities above log(NH2cm-2) ∼ 21.8-22 at both redshifts. These results imply that neutral atomic gas is an important contributor to the overall cold gas mass found in the ISM of galaxies including at densities typical for molecular clouds at z = 0 and 3. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. 
650 0 4 |a Column density 
650 0 4 |a Cosmology 
650 0 4 |a Density of gases 
650 0 4 |a Distribution functions 
650 0 4 |a Galaxies 
650 0 4 |a galaxies: evolution 
650 0 4 |a Galaxy evolution 
650 0 4 |a Gases 
650 0 4 |a ISM: atoms 
650 0 4 |a ISM: evolution 
650 0 4 |a ISM: molecules 
650 0 4 |a ISM:evolution 
650 0 4 |a ISM:molecules 
650 0 4 |a Mass densities 
650 0 4 |a Molecular gas 
650 0 4 |a Molecular mass 
650 0 4 |a Normalisation 
650 0 4 |a Post-processing 
650 0 4 |a Quasars absorption lines 
650 0 4 |a quasars: absorption lines 
650 0 4 |a Stars 
700 1 |a Fresco, A.Y.  |e author 
700 1 |a Lahén, N.  |e author 
700 1 |a Nelson, D.  |e author 
700 1 |a Péroux, C.  |e author 
700 1 |a Schinnerer, E.  |e author 
700 1 |a Szakacs, R.  |e author 
700 1 |a Weng, S.  |e author 
700 1 |a Zwaan, M.A.  |e author 
773 |t Monthly Notices of the Royal Astronomical Society