Jets in common envelopes: a low-mass main-sequence star in a red giant

We present small-scale 3D hydrodynamical simulations of the evolution of a 0.3 M ⊙main-sequence (MS) star that launches two perpendicular jets within the envelope of a 0.88 M ⊙red giant (RG). Based on previous large-scale simulations, we study the dynamics of the jets either when the secondary star...

Full description

Bibliographic Details
Main Authors: De Colle, F. (Author), Iaconi, R. (Author), López-Cámara, D. (Author), Moreno Mndez, E. (Author), Shiber, S. (Author)
Format: Article
Language:English
Published: Oxford University Press 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02661nam a2200397Ia 4500
001 10.1093-mnras-stac932
008 220706s2022 CNT 000 0 und d
020 |a 00358711 (ISSN) 
245 1 0 |a Jets in common envelopes: a low-mass main-sequence star in a red giant 
260 0 |b Oxford University Press  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1093/mnras/stac932 
520 3 |a We present small-scale 3D hydrodynamical simulations of the evolution of a 0.3 M ⊙main-sequence (MS) star that launches two perpendicular jets within the envelope of a 0.88 M ⊙red giant (RG). Based on previous large-scale simulations, we study the dynamics of the jets either when the secondary star is grazing, when it has plunged-in, or when it is well within the envelope of the RG (in each stage for ∼11 d). The dynamics of the jets through the common envelope (CE) depend on the conditions of the environment as well as on their powering. In the grazing stage and the commencement of the plunge self-regulated jets need higher efficiencies to break out of the envelope of the RG. Deep inside the CE, on the time-scales simulated, jets are choked independently of whether they are self-regulated or constantly powered. Jets able to break out of the envelope of the RG in large-scale simulations, are choked in our small-scale simulations. The accreted angular momentum on to the secondary star is not large enough to form a disc. The mass accretion on to the MS star is 1-10 per cent of the Bondi-Hoyle-Littleton rate ( ∼10 −3 -10 −1 M ⊙yr −1 ). High-luminosity emission, from X-rays to ultraviolet and optical, is expected if the jets break out of the CE. Our simulations illustrate the need for inclusion of more realistic accretion and jet models in the dynamical evolution of the CEs. © 2022 The Author(s) 
650 0 4 |a accretion, accretion discs 
650 0 4 |a Accretion: accretion disks 
650 0 4 |a binaries: close 
650 0 4 |a Binaries: close 
650 0 4 |a binaries: general 
650 0 4 |a Binaries:general 
650 0 4 |a Giant stars 
650 0 4 |a hydrodynamics 
650 0 4 |a Hydrodynamics 
650 0 4 |a Large scale simulations 
650 0 4 |a Low-mass 
650 0 4 |a Main sequence stars 
650 0 4 |a Method: numerical 
650 0 4 |a methods: numerical 
650 0 4 |a Numerical methods 
650 0 4 |a Secondary stars 
650 0 4 |a Small scale 
650 0 4 |a Stars: Be 
700 1 |a De Colle, F.  |e author 
700 1 |a Iaconi, R.  |e author 
700 1 |a López-Cámara, D.  |e author 
700 1 |a Moreno Mndez, E.  |e author 
700 1 |a Shiber, S.  |e author 
773 |t Monthly Notices of the Royal Astronomical Society