Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses

The cell nucleus plays a critical role in mechanosensing and mechanotransduction processes, by adaptive changes of its envelope composition to external biophysical stimuli such as substrate rigidity and tensile forces. Current measurement approaches lack precise control in stress application on nucl...

Full description

Bibliographic Details
Main Authors: Causa, F. (Author), Dannhauser, D. (Author), Maremonti, M.I (Author), Netti, P.A (Author), Panzetta, V. (Author)
Format: Article
Language:English
Published: NLM (Medline) 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02563nam a2200421Ia 4500
001 10.1098-rsif.2021.0880
008 220510s2022 CNT 000 0 und d
020 |a 17425662 (ISSN) 
245 1 0 |a Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses 
260 0 |b NLM (Medline)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1098/rsif.2021.0880 
520 3 |a The cell nucleus plays a critical role in mechanosensing and mechanotransduction processes, by adaptive changes of its envelope composition to external biophysical stimuli such as substrate rigidity and tensile forces. Current measurement approaches lack precise control in stress application on nuclei, thus significantly impairing a complete mechanobiological study of cells. Here, we present a contactless microfluidic approach capable to exert a wide range of viscoelastic compression forces (10-103 µN)-as an alternative to adhesion-related techniques-to induce cell-specific mechano-structural and biomolecular changes. We succeed in monitoring substantial nuclear modifications in Lamin A/C expression and coverage, diffusion processes of probing molecules, YAP shuttling, chromatin re-organization and cGAS pathway activation. As a result, high compression forces lead to a nuclear reinforcement (e.g. up to +20% in Lamin A/C coverage) or deconstruction (e.g. down to -45% in Lamin A/C coverage with a 30% reduction of chromatin condensation state parameter) up to cell death. We demonstrate how wide-range compression on suspended cells can be used as a tool to investigate nuclear mechanobiology and to define specific nuclear signatures for cell mechanical phenotyping. 
650 0 4 |a biophysics 
650 0 4 |a Biophysics 
650 0 4 |a cell nucleus 
650 0 4 |a Cell Nucleus 
650 0 4 |a chromatin 
650 0 4 |a Chromatin 
650 0 4 |a genetics 
650 0 4 |a lamin A 
650 0 4 |a Lamin Type A 
650 0 4 |a mechanotransduction 
650 0 4 |a Mechanotransduction, Cellular 
650 0 4 |a metabolism 
650 0 4 |a microfluidic device 
650 0 4 |a microfluidics 
650 0 4 |a Microfluidics 
650 0 4 |a nuclear deformation 
650 0 4 |a nuclear envelope 
650 0 4 |a physiology 
650 0 4 |a single-cell 
650 0 4 |a viscoelastic forces 
700 1 |a Causa, F.  |e author 
700 1 |a Dannhauser, D.  |e author 
700 1 |a Maremonti, M.I.  |e author 
700 1 |a Netti, P.A.  |e author 
700 1 |a Panzetta, V.  |e author 
773 |t Journal of the Royal Society, Interface