Steady-State Heat Transport and Work With a Single Artificial Atom Coupled to a Waveguide: Emission Without External Driving

We observe the continuous emission of photons into a waveguide from a superconducting qubit without the application of an external drive. To explain this counterintuitive observation, we build a two-bath model where the qubit couples simultaneously to a cold bath (the waveguide) and a hot bath (a se...

Full description

Bibliographic Details
Main Authors: Bengtsson, A. (Author), Delsing, P. (Author), Funo, K. (Author), Gasparinetti, S. (Author), Kockum, A.F (Author), Lambert, N. (Author), Lu, Y. (Author), Nori, F. (Author)
Format: Article
Language:English
Published: American Physical Society 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02633nam a2200409Ia 4500
001 10.1103-PRXQuantum.3.020305
008 220510s2022 CNT 000 0 und d
020 |a 26913399 (ISSN) 
245 1 0 |a Steady-State Heat Transport and Work With a Single Artificial Atom Coupled to a Waveguide: Emission Without External Driving 
260 0 |b American Physical Society  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1103/PRXQuantum.3.020305 
520 3 |a We observe the continuous emission of photons into a waveguide from a superconducting qubit without the application of an external drive. To explain this counterintuitive observation, we build a two-bath model where the qubit couples simultaneously to a cold bath (the waveguide) and a hot bath (a secondary environment). Our results show that the thermal-photon occupation of the hot bath is up to 0.14 photons, 35 times larger than the cold waveguide, leading to nonequilibrium heat transport with a power of up to 132 zW, as estimated from the qubit emission spectrum. By adding more isolation between the sample output and the first cold amplifier in the output line, the heat transport is strongly suppressed. Our interpretation is that the hot bath may arise from active two-level systems being excited by noise from the output line, and that the qubit coherence can be improved significantly by suppressing this noise. We also apply a coherent drive, and use the waveguide to measure thermodynamic work and heat, suggesting waveguide spectroscopy is a useful means to study quantum heat engines and refrigerators. Finally, based on the theoretical model, we propose how a similar setup can be used as a noise spectrometer which provides a solution for calibrating the background noise of hybrid quantum systems. © 2022 authors. Published by the American Physical Society. 
650 0 4 |a Artificial atoms 
650 0 4 |a Continuous emission 
650 0 4 |a Emission spectroscopy 
650 0 4 |a External driving 
650 0 4 |a Heat transfer 
650 0 4 |a Heat transport 
650 0 4 |a Non equilibrium 
650 0 4 |a Output lines 
650 0 4 |a Photons 
650 0 4 |a Power 
650 0 4 |a Quantum optics 
650 0 4 |a Spectrometers 
650 0 4 |a Steady state 
650 0 4 |a Superconducting qubits 
650 0 4 |a Thermal photons 
650 0 4 |a Waveguides 
700 1 |a Bengtsson, A.  |e author 
700 1 |a Delsing, P.  |e author 
700 1 |a Funo, K.  |e author 
700 1 |a Gasparinetti, S.  |e author 
700 1 |a Kockum, A.F.  |e author 
700 1 |a Lambert, N.  |e author 
700 1 |a Lu, Y.  |e author 
700 1 |a Nori, F.  |e author 
773 |t PRX Quantum