Leveraging Small-Scale Quantum Computers with Unitarily Downfolded Hamiltonians

In this work, we propose a quantum unitary downfolding formalism based on the driven similarity renormalization group (QDSRG) that may be combined with quantum algorithms for both noisy and fault-tolerant hardware. The QDSRG is a classical polynomial-scaling downfolding method that avoids the evalua...

Full description

Bibliographic Details
Main Authors: Evangelista, F.A (Author), Huang, R. (Author), Li, C. (Author)
Format: Article
Language:English
Published: American Physical Society 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02695nam a2200337Ia 4500
001 10.1103-PRXQuantum.4.020313
008 230529s2023 CNT 000 0 und d
020 |a 26913399 (ISSN) 
245 1 0 |a Leveraging Small-Scale Quantum Computers with Unitarily Downfolded Hamiltonians 
260 0 |b American Physical Society  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1103/PRXQuantum.4.020313 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85158842242&doi=10.1103%2fPRXQuantum.4.020313&partnerID=40&md5=ac11db45029c512354d92f4f93ded120 
520 3 |a In this work, we propose a quantum unitary downfolding formalism based on the driven similarity renormalization group (QDSRG) that may be combined with quantum algorithms for both noisy and fault-tolerant hardware. The QDSRG is a classical polynomial-scaling downfolding method that avoids the evaluation of costly three- and higher-body reduced density matrices while retaining the accuracy of classical multireference many-body theories. We calibrate and test the QDSRG on several challenging chemical problems and propose a strategy for reducing the measurement cost. We report QDSRG computations of two chemical systems using the variational quantum eigensolver on IBM quantum devices: (i) the dissociation curve of H2 using a quintuple-ζ basis and (ii) the bicyclobutane isomerization reaction to trans-butadiene, demonstrating the reduction of problems that require several hundred qubits to a single qubit. Our work shows that the QDSRG is a viable approach to leverage near-term quantum devices for estimating molecular properties with chemical accuracy, using only up to the diagonal elements of the two-body reduced density matrix of the reference state. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. 
650 0 4 |a Fault-tolerant 
650 0 4 |a Isomerization 
650 0 4 |a Many-body theory 
650 0 4 |a Multi reference 
650 0 4 |a Quanta computers 
650 0 4 |a Quantum algorithms 
650 0 4 |a Quantum device 
650 0 4 |a Quantum optics 
650 0 4 |a Qubits 
650 0 4 |a Reduced-density matrix 
650 0 4 |a Renormalization group 
650 0 4 |a Scalings 
650 0 4 |a Small scale 
650 0 4 |a Statistical mechanics 
700 1 0 |a Evangelista, F.A.  |e author 
700 1 0 |a Huang, R.  |e author 
700 1 0 |a Li, C.  |e author 
773 |t PRX Quantum