Phase-Space Geometry and Optimal State Preparation in Quantum Metrology with Collective Spins

We revisit well-known protocols in quantum metrology using collective spins and propose a unifying picture for optimal state preparation based on a semiclassical description in phase space. We show how this framework allows for quantitative predictions of the timescales required to prepare various m...

Full description

Bibliographic Details
Main Authors: Deutsch, I.H (Author), Muñoz-Arias, M.H (Author), Poggi, P.M (Author)
Format: Article
Language:English
Published: American Physical Society 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02636nam a2200325Ia 4500
001 10.1103-PRXQuantum.4.020314
008 230529s2023 CNT 000 0 und d
020 |a 26913399 (ISSN) 
245 1 0 |a Phase-Space Geometry and Optimal State Preparation in Quantum Metrology with Collective Spins 
260 0 |b American Physical Society  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1103/PRXQuantum.4.020314 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85158843359&doi=10.1103%2fPRXQuantum.4.020314&partnerID=40&md5=9b33c33120c5fc913bae8f5732c845ad 
520 3 |a We revisit well-known protocols in quantum metrology using collective spins and propose a unifying picture for optimal state preparation based on a semiclassical description in phase space. We show how this framework allows for quantitative predictions of the timescales required to prepare various metrologically useful states, and that these predictions remain accurate even for moderate system sizes, surprisingly far from the classical limit. Furthermore, this framework allows us to build a geometric picture that relates optimal (exponentially fast) entangled probe preparation to the existence of separatrices connecting saddle points in phase space. We illustrate our results with the paradigmatic examples of the two-axis countertwisting and twisting-and-turning Hamiltonians, where we provide analytical expressions for all the relevant optimal timescales. Finally, we propose a generalization of these models to include p-body collective interaction (or p-order twisting), beyond the usual case of p=2. Using our geometric framework, we prove a no-go theorem for the local optimality of these models for p>2. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. 
650 0 4 |a Collective spin 
650 0 4 |a Geometry 
650 0 4 |a In-phase 
650 0 4 |a Optimal state 
650 0 4 |a Phase space geometry 
650 0 4 |a Phase space methods 
650 0 4 |a Phase spaces 
650 0 4 |a Quantitative prediction 
650 0 4 |a Quantum metrology 
650 0 4 |a Quantum theory 
650 0 4 |a State preparation 
650 0 4 |a System size 
650 0 4 |a Time-scales 
700 1 0 |a Deutsch, I.H.  |e author 
700 1 0 |a Muñoz-Arias, M.H.  |e author 
700 1 0 |a Poggi, P.M.  |e author 
773 |t PRX Quantum