Wannier-based implementation of the coherent potential approximation with applications to Fe-based transition metal alloys

We develop a formulation of the coherent potential approximation (CPA) on the basis of the Wannier representation to advance a computationally efficient method for the treatment of homogeneous random alloys that is independent of the applied first-principles electronic structure code. To verify the...

Full description

Bibliographic Details
Main Authors: Arita, R. (Author), Ebert, H. (Author), Ito, N. (Author), Kobayashi, K. (Author), Koretsune, T. (Author), Mankovsky, S. (Author), Nomoto, T. (Author), Nomura, K. (Author)
Format: Article
Language:English
Published: American Physical Society 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02198nam a2200385Ia 4500
001 10.1103-PhysRevB.105.125136
008 220425s2022 CNT 000 0 und d
020 |a 24699950 (ISSN) 
245 1 0 |a Wannier-based implementation of the coherent potential approximation with applications to Fe-based transition metal alloys 
260 0 |b American Physical Society  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1103/PhysRevB.105.125136 
520 3 |a We develop a formulation of the coherent potential approximation (CPA) on the basis of the Wannier representation to advance a computationally efficient method for the treatment of homogeneous random alloys that is independent of the applied first-principles electronic structure code. To verify the performance of this CPA implementation within the Wannier representation, we examine the Bloch spectral function, the density of states, and the magnetic moment in Fe-based transition metal alloys Fe-X (X=V, Co, Ni, and Cu) and compare the results with those of the well-established CPA implementation based on the Korringa-Kohn-Rostoker (KKR) Green's function method. The Wannier-CPA and the KKR-CPA methods lead to very similar results. The presented Wannier-CPA method has a wide potential applicability to other physical quantities and large compound systems because of the low computational effort required. © 2022 American Physical Society. 
650 0 4 |a Approximation methods 
650 0 4 |a Coherent-potential approximation 
650 0 4 |a Computationally efficient 
650 0 4 |a Densities of state 
650 0 4 |a Electronic structure 
650 0 4 |a Fe-based 
650 0 4 |a First principles electronic structure 
650 0 4 |a Iron alloys 
650 0 4 |a Magnetic moments 
650 0 4 |a Performance 
650 0 4 |a Random alloy 
650 0 4 |a Spectral function 
650 0 4 |a Transition metals 
650 0 4 |a Wannier 
700 1 |a Arita, R.  |e author 
700 1 |a Ebert, H.  |e author 
700 1 |a Ito, N.  |e author 
700 1 |a Kobayashi, K.  |e author 
700 1 |a Koretsune, T.  |e author 
700 1 |a Mankovsky, S.  |e author 
700 1 |a Nomoto, T.  |e author 
700 1 |a Nomura, K.  |e author 
773 |t Physical Review B